

Dieses Handbuch betrifft die Produkte Vortex, Vortex Rack, Vortex Panel und Vortex DIN. In diesem Handbuch werden die Themen Installation, technische Informationen, Betrieb und Wartung behandelt.

VORTEX 12-Kanalige Schalttafel zur Gas- und Feuererkennung HANDBUCH

Vortex	Deroweon

Art. Nr. M07211DE, Ausgabe 7 Dezember 2009

INHALT

1 Einführung	1
1.1 Wozu dient dieses Handbuch?	1
1.2 Was ist Vortex?	1
1.3 Für wen ist dieses Handbuch bestimmt?	1
1.4 Was enthält dieses Handbuch?	2
2 Systemübersicht	3
2.1 Allgemein	3
2.2 Systembeschreibung	3
2.2.1 Systemmodule und Optionen	3
2.2.2 Eingangs-/Ausgangsoptionen	4
2.2.3 Digitale Kommunikation	5
2.2.4 Technische Daten	5
2.2.5 Zulassung	6
3 Installation	7
3.1 Allgemein	7
3.2 Vor der Installation	7
3.3 Installation eines vorkonfigurierten Vortex Systems	7
3.4 Installation eines nicht konfigurierten Vortex Systems	9
3.4.1 Allgemein	9
3.5 Aufbau eines Vortex Systems	10
3.5.1 Bau des Systems	10
3.5.2 Installation des System	11
3.6 Kabel	12
3.7 Schutzschalter	13
3.8 Nulleinstellung und Kalibirierung der Vortexsteuerung	14
3.8.1 Allgemein	14
3.8.2 Verfahren zu Nullstellung und Kalibrierung	14
4 Technische Informationen: Vortex	16
4 1 Allgemein	16
4.2 Knotensteuermodul	17
4.2.1 Funktionen des Knotensteuermoduls	17
4.2.2 Anzeigen. Schalter und Steckverbindungen des Knotensteuermoduls	18
4.2.3 Konfiguration des Knotensteuermoduls	19

- 4.2.3 Konfiguration des Knotensteuermoduls
- 4.3 Die Busschiene und elektrische Anschlüsse 20 4.4 Vierkanaleingangsmodul 21 4.4.1 Funktionen des Vierkanaleingangsmoduls 21 4.4.2 Konfiguration des Vierkanaleingangsmoduls 22

4.5 Relaisausgangsmodul	25
4.5.1 Funktionen des Relaisausgangsmoduls	25
4.5.2 Konfiguration des Relaisausgangsmoduls	26
4.5.3 Konfiguration der Relaislogik	30
4.6 Das Anzeigemodul	31
4.6.1 Funktionen des Anzeigemoduls	31
4.6.2 Merkmale des Anzeigemoduls	33
4.7 Stromüberwachungsmodul	35
4.7.1 Funktionen des Stromüberwachungsmoduls	35
4.7.2 Trennung des vorkonfektionierten 5-poligen Kabels	37
4.7.3. Montage des Stromüberwachungsmoduls auf einer DIN Schiene	37
4.7.4 Notstrombatterien	38
4.7.5 Stromausfall	39

5 Technische Informationen: Feldgeräte	40
5.1 Allgemein	40
5.2 Gasdetektoren	40
5.2.1 Positionierung von Gasdetektoren	40
5.3 Feuerdetektoren	41
5.3.1 Positionierung von Feuerdetektoren	42
5.4 Anschluss von akustischen/optischen Alarmen	42

6 Betrieb	43
6.1 Allgemein	43
6.2 Überwachung mit dem Anzeigemodul	43
6.3 Alarmzustände und Fehler	44
6.3.1 Anzeigemodul	44
6.3.2 Interne Schallgeber und Relais	44
6.4 Fehlermeldungen	44
6.4.1 Kanalfehler	44
6.4.2 Stromversorgungsstatus	46
6.4.3 Systemfehler	47

7 Wartung	49
7.1 Funktionsprüfung der Detektoren	49
7.2 Eingang sperren	49
7.3 Rekalibrierung von Vortex	49
7.4 Kanalprüfungsmodus	51
7.4.1 Vorgehen zur Kanalprüfung	51
7.4.2 Einstellung der Alarmstufen	53
7.5 Lampenprüfung	53
7.6 Ereignisprotokollierung	54
7.7 Austausch von Modulen	55
7.8 Montage und Demontage von Modulen auf der DIN Schiene	55
7.9 Austausch der Batterien	56
Anhang A: Glossar	58
Annang B: Elektrische Anschlusse	01
Annang C: Ersatztenniste Anhang D: Produktnalotte der Groween Detektoren	05
Anhang D. 1 Touukipalette del Crowcon Detektoren	68
Anhang F. Frdung	
Annung I. Druung	/1
Einführung	71
Definitionen	71
Fragen	71
Diagramme	74
Diagramm 1	74
Diagramm 2	75
Diagramm 3	76
Diagramm 4A	78
Diagramm 4B	79
Diagramm 5A	80
Diagramm 5B	81
Verdrahtungsnormen	81

GEWÄHRLEISTUNGSERKLÄRUNG

CROWCON

83

ABBILDUNGSVERZEICHNIS

Abbildung 1: Allgemeiner Aufbau der Vortex Module	4
Abbildung 2: Vortex System in Standardgehäuse.	9
Abbildung 3: Knotensteuermodul	17
Abbildung 4: Aufbaudetails der Busschiene	20
Abbildung 5: Vierkanaleingangsmodul	21
Abbildung 6: Schalter des Vierkanaleingangsmoduls	22
Abbildung 7: Relaisausgangsmodul	25
Abbildung 8: Wahlschalter des Relaisausgangsmoduls	27
Abbildung 9: Rückseite des Anzeigemoduls	31
Abbildung 10: Vorderseite des Anzeigemoduls	32
Abbildung 11: Stromüberwachungsmodul	35
Abbildung 12: Alternative Montage des Stromüberwachungsmoduls	38
Abbildung 13: Darstellung eines Feuerdetektorkreises	41
Abbildung 14: Modul auf DIN Schiene und Vorgehen zur Demontage	56
Abbildung 15: Ausbau der Batterien aus dem Vortex Standardgehäuse	57
Abbildung 16: Anschlussschema für das Vortex System	61
Abbildung 17: Schaltplan für das Knotensteuermodul	62
Abbildung 18: Schaltplan für das Vierkanaleingangsmodul	63
Abbildung 19: Schaltplan für das Relaisausgangsmodul	64
Abbildung 20: Entscheidungsbaum zur Festlegung der Erdungsanforderungen	73
Vortex Handbuch Inhalt	
Ausgabe 7, Dezember 2009 vii	

TABELLENVERZEICHNIS

Tabelle 1: Vortex Optionen.	1
Tabelle 2: Welche Kapitel in diesem Handbuch sollen gelesen werden?	2
Tabelle 3: Liste der Vortex Module	3
Tabelle 4: Technische Daten des Vortex	5
Tabelle 5: Kabeleigenschaften	13
Tabelle 6: Anzeigen, Schalter und Steckverbindungen des Knotensteuermoduls	18
Tabelle 7: Systemkonfigurationseigenschaften	19
Tabelle 8: Schaltereinstellungen am Vierkanaligen Eingangsmodul	22
Tabelle 9: Konfigurierbare Eigenschaften der Detektorkanäle	23
Tabelle 10: Merkmale des Relaisausgangsmoduls	26
Tabelle 11: Schaltereinstellungen am Relaisausgangsmodul	26
Tabelle 12: Konfigurierbare Eigenschaften der Relais	27
Tabelle 13: Relaisausgangsarten	28
Tabelle 14: Konfigurierbare Eigenschaften der Relaislogik	31
Tabelle 15: Merkmale des Anzeigemoduls	33
Tabelle 16: Merkmale des Stromüberwachungsmoduls	36
Tabelle 17: Liste der Kanalfehler	45
Tabelle 18: Liste der LED-Codes für Stromversorgungsstatus	46
Tabelle 19: Liste der LED-Fehlercodes am Knotensteuermodul	47
Tabelle 20: Anzeigensequenzen während der Kanalprüfung	52
Tabelle 21: Daten, die im Ereignisprotokoll aufgezeichnet werden	54

1.1 Wozu dient dieses Handbuch?

In diesem Handbuch werden die Installation, Konfiguration und der Betrieb des Vortex Gas- und Feuererkennungssystems und seiner Komponenten beschrieben.

Nicht alle Funktionen, die hier behandelt werden, sind für alle Einheiten verfügbar. Zu Hochrüstung und Upgrades wenden Sie sich bei Bedarf bitte an Crowcon.

1.2 Was ist Vortex?

Vortex ist ein modulares Gas- und Feuererkennungssystem zur Fernüberwachung von 4-20mA und herkömmlichen schleifengespeisten Feuermeldern. Die Verwendung anderer Geräte ist nach Rücksprache mit Crowcon möglich. Über das System können flexibel zugeordnete und angewählte Relais aktiviert werden, wenn vordefinierte Gaswerte überschritten werden oder Rauch bzw. Feuer erkannt wird. Diese Relaisausgänge können dann zur Aktivierung von hörbaren und/oder sichtbaren Warnsignalen genutzt werden. Die integrierte Modbus-Kommunikationsschnittstelle ermöglicht eine Verbindung mehrerer Vortex Systeme an ein übergeordnetes Steuerüberwachungssystem, das Industriestandards entspricht.

Das Vortex System kann in verschiedene Gehäusearten eingebaut werden, die diversen Möglichkeiten sind in Tabelle 1 dargestellt.

Vortex.	Standardgehäuse für Wandmontage mit Display, siehe
	Abbildung 2: Vortex System in Standardgehäuse.
Vortex Rack*	Vortex System mit einem 19 Zoll Display in
	Rackeinbau
Vortex Panel*.	Vortex System mit einem 19 Zoll Display in
	Paneleinbau
Vortex DIN*	Vortex System ohne Display.

Tabelle 1: Vortex Optionen

Die Optionen mit * können als Module zum Einbau in bereits vorhandene Gehäuse geliefert werden.

Das System kann bereits mit vorkonfiguriert mit Detektoren/Sensoren und Ausgabegeräten geliefert werden. Eine Übersicht der jeweiligen Konfiguration wird im technischen Datenblatt zusammen mit dem System mitgeliefert. Konfigurationen können mithilfe der Vortex PC Software verändert werden.

1.3 Für wen ist dieses Handbuch bestimmt?

Möglicherweise müssen Sie nicht das gesamte Handbuch lesen. Sie werden zu den für Ihre Zwecke erforderlichen Kapiteln geführt.

Dieses Handbuch ist zu beachten wenn:

- das Vortex System zur Überwachung von Bränden oder Gasatmosphären und zur Reaktion auf Alarmmeldungen verwendet wird
- zur Durchführung von Routinewartungen am Vortex System und seinen Detektoren
- zur Konfiguration des Vortex Systems
- das Vortex System und seine Detektoren installiert werden
- Sie technische Informationen zu Vortex benötigen

1.4 Was enthält dieses Handbuch?

In diesem Handbuch werden folgende Themen behandelt:

- DÜberblick über das Vortex System
- Installation des Vortex Systems vorkonfiguriert und mit mitgelieferten Detektoren
- Installation und Konfiguration des Vortex zum Betrieb mit Ihren vorhandenen Detektoren
- Installation des Vortex als Modul oder zum Einbau in Ihre bereits vorhandene Umgebung
- Konfiguration und technische Informationen
- Routinemäßige Wartung, Neukalibrierung und Prüfung

Tabelle 2 zeigt die Kapitel, die bestimmte Informationen enthalten. Falls Sie Daten/Informationen benötigen, die nicht in diesem Handbuch enthalten sind, wenden Sie sich bitte an den Crowcon Technical Support.

Tabelle 2: Welche Kapitel in diesem Handbuch sollen gelesen werden?

Wenn	Beachten Sie bitte
Das Vortex System zur Überwachung von	Kapitel 6
Bränden oder Gasatmosphären und zur	
Reaktion auf Alarmmeldungen verwendet wird	
Routinewartungen am Vortex System und	Kapitel 2 und 7 mit Hinweisen auf
seinen Detektoren durchgeführt werden sollen	andere Abschnitte
Installation, Kalibrierung und	Kapitel 2 bis 5
Neukonfigurierung eines Vortex Systems	
erfolgen soll	

2 SYSTEMÜBERSICHT

2.1 Allgemein

Dieses Kapitel bietet Ihnen einen Überblick über das Vortex System, seine Module und ihre jeweilige Wechselwirkung. Vortex ist in zahlreichen Varianten, je nach den erforderlichen Modulen und Gehäusen, erhältlich.

Wenn Sie Vortex allein für die Überwachung von und Reaktion auf Warnmeldungen verwenden, müssen Sie diese Kapitel nicht lesen. Siehe dazu Kapitel *6. Betrieb*. In allen anderen Fällen empfehlen wir, diesen Abschnitt zu lesen.

2.2 Systembeschreibung

2.2.1 Systemmodule und Optionen

Die Grundbauteile des Vortex Systems finden Sie in Tabelle 3, einige davon sind Optionen. Die wesentlichen Bestandteile sind mit einem Stern (*) gekennzeichnet.

Modul	Beschreibung
* Knotensteuermodul	Zentrales Steuermodul im System
	zur Kommunikation zwischen
	Modulen
* Busschiene	Modul für elektrische
	Verbindungen und Kommunikation
* Vierkanalelement	Eingangssteuerung und Messung;
	bis zu 4 Kanäle pro Modul,
	maximal 3 Module.
Relaisausgangsmodul	Ausgangssteuerung; bis zu 8
	Kanäle pro Modul, maximal 4
	Module.
Anzeigemodul	Benutzeranzeige und
	eingeschränkte Konfiguration
* Stromüberwachungseinheit	Steuerung und Schutz der
	Stromversorgung
Netzanschluss der Module	Wenn die Stromversorgung nicht
	über einen Netzanschluss erfolgt,
	muss eine geeignete
	Gleichstromversorgung
	bereitgestellt werden.

Tabelle 3: Liste der Vortex Module

Abbildung 1 zeigt den allgemeinen Aufbau der Module in dem Vortex System. Die Anzahl und Anordnung der Module variiert entsprechend Ihrer Vortex Systemkonfiguration.

Abbildung 1: Allgemeiner Aufbau der Vortex Module

DISPLAY MODULE	ANZEIGEMODUL
RIBBON CABLE	FLACHBANDKABEL
BUS RAIL	BUSSCHIENE
POWER MONITORING MODULE	STROMÜBERWACHUNGSMODUL
NODE CONTROLLER MODULE	KNOTENSTEUERMODUL
QUAD CHANNEL INPUT MODULES (MAXIMUM OF 3)	VIERKANALEINGANGSMODULE (MAXIMAL 3)
RELAY MODULES (MAXIMUM OF 4)	RELAISMODULE (MAXIMAL 4)

2.2.2 Eingangs-/Ausgangsoptionen

Das Vortex System ist eine Schalt- und Steuertafel für Gas- und Feuerdetektoren. Es ist für den Betrieb mit folgenden Detektoren geeignet:

- 2-Leiter Sink-, oder 3-Leiter Sink- oder Source-Detektoren mit 4-20mA. Crowcon stellt eine breite Palette von Detektoren für brennbare und toxische Gase sowie Sauerstoffdetektoren her. Crowcon Produktpallete, siehe Anhang D. Es ist möglich, Detektoren vieler anderer Hersteller mit dem System einzusetzen, einschließlich Feuerdetektoren mit 4-20mA, jedoch darf das Verhalten dieser Detektoren nicht mit dem von herkömmlichen schleifengespeisten Feuerdetektoren verwechselt werden, die in diesem Handbuch als Feuerdetektoren bezeichnet werden.
- □Herkömmliche schleifengespeiste Feuerdetektoren und Handfeuermelder (bis zu zwanzig Geräte) mit einem maximalen Schleifenstrom von 60mA. An jedes Vierkanaleingangsmodul darf nur eine Brandmeldeschleife angeschlossen werden. Eine Prüfung des Vortex Systems im Betrieb mit Rauchdetektoren der 60er Baureihe von Apollo wurde durchgeführt. Detektoren anderer Hersteller, zum Beispiel der Thorn MS302Ex Brandmelder, können auch eingesetzt werden. Weitere Informationen erhalten Sie von Crowcon.

Vortex Handbuch

Vortex kann bis zu 32 vollständig angewählte Relaisausgänge steuern, die aus einer Reihe von Kanälen und Systemfunktionen ausgewählt werden können. Die Vierkanaleingangsmodule und Relaisausgangsmodule (Abschnitt 2.2.1) können wie folgt kombiniert werden:

	Anzahl der Vierkanaligen Eingangsmodule	Maximale Anzahl der Relaisausgangsmodule
Vortex	Bis zu 3	3
	Bis zu 2	4
Vortex DIN	Bis zu 3	4
Vortex Rack		
Vortex Panel		

2.2.3 Digitale Kommunikation

Auf dem Knotensteuermodul befindet sich eine RS232 Konfigurationsschnittstelle, die zusammen mit der VortexPC Software, geeignet für das Microsoft® Windows® Betriebssystem, zur Konfiguration des Systems verwendet werden kann.

Außerdem verfügt das System über eine RS485 Modbus-Schnittstelle, die für PCs, SPS und verteilte Steuersysteme zur Überwachung des Vortex Systems verwendet werden kann.

2.2.4 Technische Daten

Die technischen Daten des Vortex Systems sind im Folgenden aufgelistet.

Lagertemperatur	-25 bis +55 Grad C
Betriebstemperatur	-10 bis +40 Grad C
Feuchte	0 bis 99% relative Luftfeuchtigkeit, nichtkondensierend bei 40 Grad
	С
Schutzart	Vortex – IP65
	Vortex Panel – Das Display und die Typenschildbefestigung
	entsprechen IP65, aber die allgemeine Schutzart hängt von dem Rest
	des Gehäuses ab.
	Für Vortex DIN und Vortex Rack hängt die Schutzart ebenfalls von
	dem verwendeten Gehäuse ab.
Stoßfestigkeit	Widerstandsfähig gegen normale Abnutzung und Verschleiß bei der
	Installation
Sicherheit	Das Steuersystem ist nicht für Betrieb in Gefahrenbereichen
	vorgesehen. Erdung für den Betrieb mit IS-Detektoren wird in
	Anhang F erläutert.

Tabelle 4: Technische Daten des Vortex

Vortex Handbuch

Systemübersicht

Versorgungsspannung	Vortex 20-30V DC 5A 110-120V AC 60Hz 3,2A 220-240V AC 50Hz 1,6A Bei anderen Vortex Systemen hängt die Spannung von der Größe des Systems und dem verbundenen Netzanschlussgerät ab.
Notstrombatterien	Vortex: Zwei 12V, 2Ah Batterien. Puffersysteme mit größeren Kapazitäten sind verfügbar. Bei anderen Vortex Systemen hängt die Spannung von der Größe des Systems und dem verbundenen Netzanschlussgerät ab.

2.2.5 Zulassung

Vortex entspricht folgenden Richtlinien:

- Niederspannungsrichtlinie EN61010-1:1993, Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte Teil 1.
- EMC EN50270:1999, Elektromagnetische Verträglichkeit Elektrische Geräte für die Detektion und Messung von brennbaren Gasen, toxischen Gasen oder Sauerstoff.

Hinweis: Diese branchenspezifische Norm ersetzt die Anforderungen der allgemeinen EMV-Normen EN 50081 und EN 50082.

3 INSTALLATION

3.1 Allgemein

Dieses Kapitel beschreibt die Installationsvorgänge für das Vortex Gerät mit den zugehörigen Detektoren und Ausgabegeräten.

Wenn Sie Vortex allein für die Überwachung von und Reaktion auf Warnmeldungen verwenden, müssen Sie diese Kapitel nicht lesen. Siehe dazu Kapitel *6. Betrieb*.

3.2 Vor der Installation

Bevor Sie das Vortex System zusammen mit den Feldgeräten installieren, vergewissern Sie sich, dass Sie die Anweisungen in diesem Kapitel gelesen und verstanden haben, besonders die zur Benutzung des Anzeigemoduls mit seinen Tasten und/oder der VortexPC Software, falls diese für Ihre Installation erforderlich sind. Details zu den Funktionen des Anzeigemoduls siehe Abschnitt 4.6.

Für jedes Feldgerät werden eigene Anweisungen zu Installation, Betrieb und Wartung bereitgestellt. Bitte beachten Sie auch die Anweisungen zu den Geräten, die in Ihrem System installiert werden.

Richtlinien und Installationsmethoden für Elektrogeräte sind je nach Land unterschiedlich.

Stellen Sie sicher, dass Sie mit den vor Ort geltenden Regeln und Richtlinien vertraut sind, bevor Sie dieses Handbuch zur Installation oder zum Betrieb eines Vortex Systems verwenden. Bei Bedarf bietet Crowcon Ihnen weitere Informationen und Empfehlungen.

Das Vortex System ist für Betrieb in nicht gefährdeten Bereichen vorgesehen. Feldgeräte können in Umgebungen mit brennbaren Gasen angebracht werden. Prüfen Sie, ob die zu installierende Ausrüstung für die Bereichsklassifizierung geeignet ist.

Für die Installation oder Wartung von Feldgeräten müssen auch die Vorschriften vor Ort befolgt werden.

Crowcon empfiehlt, die Installation eines Vortex Systems von Personen durchführen zu lassen, die bereits über Erfahrung mit Installationen von Elektrogeräten in gefährdeten Bereichen verfügen. Hinweise zu Erdungsanforderungen finden Sie in Anhang F.

Vortex ist für den Betrieb in zahlreichen verschiedenen Umgebungen geeignet. Details siehe 2.2.4. Wird eine Vortex Einheit im Außenbereich angebracht und ist dadurch hohen Temperaturen durch intensive, direkte Sonneneinstrahlung ausgesetzt, muss eine geeignete Schutzblende montiert werden.

3.3 Installation eines vorkonfigurierten Vortex Systems

Dieser Abschnitt beschreibt die ersten Schritte zur Installation eines Vortex Systems, das für die mitgelieferten Detektoren bereits vorkonfiguriert wurde.

Die vollständigen Konfigurationsdetails finden Sie auf dem Datenblatt, dass mit Ihrem System mitgeliefert wurde.

Abbildung 1 auf Seite 4 zeigt den Aufbau der Module in dem Vortex System. Die Anzahl und Anordnung der Module variiert entsprechend Ihrer Vortex Konfiguration.

- 1. Vergewissern Sie sich, dass die vorhandene Stromversorgung für das System geeignet ist (siehe Abschnitt 4.3 und Tabelle 16 auf Seite 36). Wenn Ihr Netzversorgungsgerät mit einem Spannungswahlschalter ausgestattet ist, stellen Sie ihn auf die richtige Position für Ihre Netzversorgung.
- 2. Für die Stromversorgung des Systems muss ein Schutzschalter vorhanden sein, der den Vorschriften entspricht. Siehe Abschnitt 3.7.
- 3. Bringen Sie das Gehäuse oder den Schrank in seiner endgültigen Position an. Beachten Sie hierbei auch Punkte wie Standort, Verkabelung und Erdung, wie in den Abschnitten 3.6 und 5.2 sowie in Anhang F erörtert. Ein Standardgehäuse wird mithilfe von Schrauben durch die zwei oberen Aufhängösen an der Wand montiert. Zwei weitere Schrauben durch die unteren beiden Aufhängösen fixieren es an der Wand. (Siehe Abbildung 2)
- 4. Installieren Sie nun die Detektoren. Beachten Sie dazu Abschnitt 5.2.1 zur Positionierung von Gasdetektoren und Abschnitt 5.3.1 zur Positionierung von Feuerdetektoren.
- 5. Installieren Sie anschließend die Ausgabegeräte. Siehe Abschnitt 5.4.
- 6. Schließen Sie die externen Geräte nach Bedarf an die RS485 Schnittstelle an.
- 7. Falls Sie eine Notstrombatterie verwenden, verbinden Sie den Batteriestecker mit der Buchse oben rechts am Stromüberwachungsmodul (siehe Abbildung 11 auf Seite 35). Damit ist das System an der Notstromversorgung über Batterien angeschlossen. Vergewissern Sie sich, dass das Stromüberwachungsmodul über das Kabel mit der Busschiene verbunden ist. Wenn die Batterie ausreichend geladen ist, wird an diesem Zeitpunkt die Versorgungsspannung zugeschaltet (siehe Schritt 8).
- 8. Schließen Sie die externe Stromversorgung an. Die grüne LED auf dem Stromüberwachungsmodul leuchtet. Das System führt einige Sekunden lang eine Prüfung der Lampen und des akustischen Alarms durch. Nach diesem Test können Fehler auftreten. Das ist ganz normal und liegt daran, dass noch nicht alle Geräte angeschlossen sind. Drücken Sie ACCEPT/RESET (Bestätigen/Zurücksetzen), um den akustischen Alarm auszuschalten.
- 9. Nun können die Detektoren nacheinander angeschlossen und eingeschaltet werden, indem die jeweiligen Stecker in die entsprechenden Buchsen auf der Ober- und Unterseite des Vierkanaleingangsmoduls gesteckt werden. Den Schalplan finden Sie in Abbildung 18, Anhang B.
- 10. Notieren sie die Detektorstandorte auf dem Schild in dem Gehäuse oder Schrank.
- 11. Schließen Sie dann die Ausgabegeräte nacheinander an, indem Sie sie mit den Relaisausgangsmodulen, wie im Schaltplan in Abbildung 19, Anhang B gezeigt, verbinden.
- 12. Dann muss die Anzeige durch alle Kanäle getaktet werden. Drücken Sie dafür die Taste RUN (Ausführen).
- 13. Kalibrieren Sie die Detektoren gemäß den mitgelieferten Anweisungen.
- 14. Kalibrieren Sie die Kanäle des Vierkanaleingangsmoduls, wie in Abschnitt 3.8 beschrieben.

Abbildung 2: Vortex System in Standardgehäuse

EXTERNAL EARTH TYP BOTH SIDES	EXTERNE ERDUNG, NORM. AUF BEIDEN SEITEN
4x CLEARANCE FOR M5 OR 1/4" BOLTS	4x FREIMASS FÜR M5 ODER 1/4'' SCHRAUBEN

3.4 Installation eines nicht konfigurierten Vortex Systems

3.4.1 Allgemein

Dieser Abschnitt beschreibt die ersten Schritte zur Installation eines nicht vorkonfigurierten Vortex Systems, das Sie für Ihre vorhandenen Detektoren konfigurieren müssen.

Er ist auch zu beachten, wenn Sie ein bestehendes System neu konfigurieren möchten, zum Beispiel, wenn Sie neue Detektoren oder Warngeräte installieren, wenn Sie neue Vierkanaleingangsmodule oder Relaisausgangsmodule in Ihr System einbauen oder diese tauschen.

- 1. Vergewissern Sie sich, dass die vorhandene Stromversorgung für das System geeignet ist (siehe Abschnitt 4.3 und Tabelle 16 auf Seite 36). Wenn Ihr Netzversorgungsgerät mit einem Spannungsschalter ausgestattet ist, stellen Sie ihn auf die richtige Position für Ihre Netzversorgung.
- 2. Für die Stromversorgung des Systems muss ein Schutzschalter vorhanden sein, der den Vorschriften entspricht. Siehe Abschnitt 3,7.
- 3. Bringen Sie das Gehäuse oder den Schrank in seiner endgültigen Position an. Beachten Sie hierbei auch Punkte wie Standort, Verkabelung und Erdung, wie in den Abschnitten 3.6 und 5.2 sowie in Anhang F erörtert. Ein Standardgehäuse wird mithilfe von Schrauben durch die zwei oberen Aufhängösen an der Wand montiert. Zwei weitere Schrauben durch die unteren beiden Aufhängösen fixieren es an der Wand.

- 4. Installieren Sie nun die Detektoren. Beachten Sie dazu Abschnitt 5.2.1 zur Positionierung von Gasdetektoren und Abschnitt 5.3.1 zur Positionierung von Feuerdetektoren.
- 5. Installieren Sie anschließend die Ausgabegeräte. Siehe Abschnitt 5.4.
- 6. Schließen Sie die externen Geräte nach Bedarf an die RS485 Schnittstelle an.
- 7. Falls Sie eine Notstrombatterie verwenden, verbinden Sie den Batteriestecker mit der Buchse oben rechts am Stromüberwachungsmodul (siehe Abbildung 11, Seite 35). Damit ist das System an der Notstromversorgung über Batterien angeschlossen. Wenn die Batterie ausreichend geladen ist, wird an diesem Zeitpunkt die Versorgungsspannung zugeschaltet (siehe Schritt 8).
- 8. Schließen Sie die Stromversorgung an. Das System führt eine Prüfung der Lampen und des akustischen Alarms durch. Nach diesem Test können Fehler auftreten. Das ist ganz normal und liegt daran, dass noch nicht alle Geräte angeschlossen sind. Drücken Sie ACCEPT/RESET (Bestätigen/Zurücksetzen), um den akustischen Alarm auszuschalten.
- 9. Verbinden Sie das System mit einem PC und konfigurieren Sie das System mit VortexPC. Eine Anleitung hierzu finden Sie unter VortexPC Hilfe.
- 10. Konfigurieren Sie die Schalter des Vierkanaleingangsmoduls. Details siehe Abschnitt 4.4.2. Die Anweisungen zur Demontage und Montage der Module auf der DIN Schiene finden Sie in Abschnitt 7.8.
- Nun können die Detektoren nacheinander angeschlossen und eingeschaltet werden, indem die jeweiligen Stecker in die entsprechenden Buchsen auf der Ober- und Unterseite des Vierkanaleingangsmoduls gesteckt werden. Den Schalplan finden Sie in Abbildung 18, Anhang B.
- 12. Kalibrieren Sie jeden Detektor gemäß den mitgelieferten Anweisungen. Kalibrieren Sie die Kanäle des Vierkanaleingangsmoduls, wie in Abschnitt 3.8 beschrieben.
- 13. Notieren sie die Detektorstandorte auf dem Schild in dem Gehäuse oder Schrank.
- 14. Konfigurieren Sie die Schalter des Relaisausgangsmoduls. Details siehe Abschnitt 4.5. Die Anweisungen zur Demontage und Montage der Module auf der DIN Schiene finden Sie in Abschnitt 7.8.
- 15. Dann können Sie Ausgabegeräte nacheinander anschließen und einschalten. Verbinden Sie sie dazu mit den Relaisausgangsmodulen, wie im Schaltplan in Abbildung 19, Anhang B gezeigt.
- 16. Dann muss die Anzeige durch alle Kanäle getaktet werden. Drücken Sie dafür die Taste RUN (Ausführen).

3.5 Aufbau eines Vortex Systems

Dieser Abschnitt enthält Anweisungen zu Bau und Installation eines Vortex Systems in Ihren vorhandenen Schaltschrank oder Rack.

3.5.1 Bau des Systems

- 1. Bauen Sie die Busplatine in die DIN Schiene ein und montieren Sie die DIN Schiene im Gehäuse. Wenn Sie zwei DIN Schienen verwenden, montieren Sie sie so, dass sie mit dem Flachbandkabel dem Flachbandkabel mit den zwei 10-poligen Steckern- verbunden werden können.
- 2. Konfigurieren Sie die Schalter des Vierkanaleingangsmoduls. Details siehe Abschnitt 4.4.2.
- 3. Konfigurieren Sie die Schalter des Relaisausgangsmoduls. Details siehe Abschnitt 4.5.

Vortex Handbuch

- 4. Montieren Sie die Module auf der Busschiene / den Busschienen. Um Störungen in den Eingangskanälen beim Schalten großer Lasten zu vermeiden, sollten die Relaisausgangsmodule rechts neben den Vierkanaleingangsmodulen positioniert werden. Das Knotensteuermodul sollte sich, wie in Abbildung 1, ganz links befinden. Die Anweisungen zu Montage und Demontage der Module auf der DIN Schiene finden Sie in Abschnitt 7.8.
- 5. WICHTIGER SICHERHEITSHINWEIS: Wenn Sie ein Vortex DIN, Vortex Panel oder Vortex Rack System verwenden, jedoch das vorkonfektionierte 5-poligte Kabel für die Verbindung vom Stromüberwachungsmodul zur Standard-Vortex Netzversorgungseinheit nicht benötigen, muss das Kabel gemäß Abschnitt 4.7.2 getrennt werden. Montieren Sie das Stromüberwachungsmodul auf der DIN Schiene gemäß Abschnitt 4.7.3.
- 6. Vergewissern Sie sich, dass die vorhandene Stromversorgung für das System geeignet ist (siehe Abschnitt 4.3 und Tabelle 16). Eine ordnungsgemäße Erdung der Netzversorgungseinheit ist erforderlich, falls vorhanden. Wenn Ihr Netzversorgungsgerät mit einem Spannungsschalter ausgestattet ist, stellen Sie ihn auf die richtige Position für Ihre Netzversorgung.
- 7. Falls eine Notstrombatterie verwendet wird, ist diese in aufrechter Position zu montieren und die Sicherheitsventile dürfen nicht verdeckt werden. Batterien dürfen nur in gut belüfteten Umgebungen aufgestellt werden, um die Ansammlung von Gasen durch Fehlfunktion zu vermeiden.
- 8. Bringen Sie das Anzeigemodul in einer geeigneten Position an.
 - a. Bei Vortex Rack muss das Display lediglich in ein 19 Zoll Racksystem eingebaut werden.
 - b. Bei Vortex Panel sind die Löcher anhand der mitgelieferten Schablone in das Panel zu bohren. Anschließend wird das Display mit dem zugehörigen Metallteilen von hinten in das Panel eingesetzt und mit Senkkopfschrauben befestigt. Das Typenschild wird vorne am Panel angebracht. Seien Sie beim Anbringen des Typenschilds besonders vorsichtig, da der Kleber sehr stark ist und eine falsche Platzierung des Schilds nicht korrigiert werden kann, ohne dass die Klebewirkung zwischen Schild und Panel leidet.
- 9. Stellen Sie dann die elektrischen Verbindungen her, wie im Schema in Anhang B, Abbildung 16 gezeigt. Verbindungsschema für das Vortex System Wichtige Informationen zur Erdung siehe Anhang F.

Der Hersteller hat alle Anstrenungen unternommen, um Anweisungen bereit zu stellen, deren Ergebnis ein System ist, das die LVD und EMV Normen erfüllt (siehe Abschnitt 2.2.5). Letztendlich ist es jedoch die Verantwortung des Kunden, diese Anweisungen zu befolgen, um zu gewährleisten, dass das System die Normen tatsächlich erfüllt.

3.5.2 Installation des Systems

- 1. Bringen Sie das System in seiner endgültigen Position an. Beachten Sie hierbei auch Punkte wie Standort, Verkabelung und Erdung, wie in den Abschnitten 3.6 und 5.2 sowie in Anhang F erörtert.
- 2. Für die Stromversorgung des Systems muss ein Schutzschalter vorhanden sein, der den Vorschriften entspricht. Siehe Abschnitt 3,7.
- 3. Installieren Sie nun die Detektoren. Beachten Sie dazu Abschnitt 5.2.1 zur Positionierung von Gasdetektoren und Abschnitt 3.6 und 5.3.1 für Feuerdetektoren.
- 4. Installieren Sie anschließend die Ausgabegeräte. Siehe Abschnitt 5.4.
- 5. Schließen Sie die externen Geräte nach Bedarf an die RS485 Schnittstelle an.
- 6. Falls Sie eine Notstrombatterie verwenden, verbinden Sie den Batteriestecker mit der Buchse oben rechts am Stromüberwachungsmodul (siehe Abbildung 11, Seite 35). Damit ist das System an der Notstromversorgung über Batterien angeschlossen.

Wenn die Batterie ausreichend geladen ist, wird an diesem Zeitpunkt die Versorgungsspannung zugeschaltet (siehe Schritt 7).

- 7. Schließen Sie die Stromversorgung an. Das System führt eine Prüfung der Lampen und des akustischen Alarms durch. Nach diesem Test können Fehler auftreten. Das ist ganz normal und liegt daran, dass noch nicht alle Geräte angeschlossen sind. Drücken Sie ACCEPT/RESET (Bestätigen/Zurücksetzen), um den akustischen Alarm auszuschalten.
- 8. Nun können die Detektoren nacheinander angeschlossen und eingeschaltet werden, indem die jeweiligen Stecker in die entsprechenden Buchsen auf der Ober- und Unterseite des Vierkanaleingangsmoduls gesteckt werden. Den Schalplan finden Sie in Abbildung 18, Anhang B. Konfigurieren Sie die Kanäle. Siehe Abschnitt 4.4.2. Kalibrieren Sie jeden Detektor gemäß den mitgelieferten Anweisungen. Kalibrieren Sie die Kanäle des Vierkanaleingangsmoduls, wie in Abschnitt 3.8 beschrieben.
- 9. Notieren sie die Detektorstandorte auf dem Schild in dem Gehäuse oder Schrank.
- 10. Dann können Sie Ausgabegeräte nacheinander anschließen und einschalten. Verbinden Sie sie dazu mit den Relaisausgangsmodulen, wie im Schaltplan in Abbildung 19, Anhang B gezeigt. Konfigurieren Sie die Relais. Siehe Abschnitt 4.5.2 und 4.5.3.
- 11. Dann muss die Anzeige durch alle Kanäle getaktet werden. Drücken Sie dafür die Taste RUN (Ausführen).

3.6 Kabel

Die Verkabelung von Gasdetektoren, Feuerdetektoren, Alarmelementen und anderen Ausgabegeräten ist sehr wichtig.

Die Verkabelung eines Detektors muss gemäß durch die zuständige Behörde im betreffenden Land anerkannten Normen erfolgen und die elektrischen Anforderungen des Detektors sind zu erfüllen.

- Für nicht eigensichere Geräte empfiehlt Crowcon die Verwendung stahldrahtbewehrter (SWA) Kabel. Geeignete, explosionsgeschützte Kabeldurchführungen müssen verwendet werden.
- Für eigensichere Geräte empfiehlt Crowcon die Verwendung verdrillter Doppelleitungen mit kompletter Abschirmung und Mantel. Geeignete, witterungsbeständige Kabeldurchführungen müssen verwendet werden. Wenn IS-Geräte in gefährdeten Bereichen eingesetzt werden, muss eine geeignete Zenerbarriere oder ein galvanischer Trennschalter verwendet werden.
- Bei fünf Detektoren empfiehlt Crowcon die Verwendung einer verdrillten Doppelleitung, mit Abschirmung und einem feuerfesten Vollisolationsmantel, zum Beispiel Pirelli FP200 oder gleichwertig. Geeignete, witterungsbeständige Kabeldurchführungen müssen verwendet werden. Der maximale Schleifenwiderstand darf 100 Ohm betragen.

Alternative Verkabelungstechniken wie Stahlleitungen, sind möglich, vorausgesetzt die entsprechenden Normen werden eingehalten.

Die minimale Versorgungsspannung für einen Detektor und die maximale Stromaufnahme dieses Detektors variieren von Gerät zu Gerät. Zur Berechnung der maximal zulässigen Kabellängen für die jeweiligen Leitungsarten, beachten Sie bitte die entsprechenden Anweisungen zu Installation, Betrieb und Wartung, die mit jedem Detektor mitgeliefert werden. Die maximal zulässige Kabellänge hängt von der Installation ab, also ob zum Beispiel eine Zenerbarriere oder ein galvanischer Trennschalter erforderlich ist (wie bei eigensicheren Geräten), oder nicht.

Zur Berechnung der maximalen Kabellänge für einen Detektor, gehen Sie für einen 3-Leiter Detektorkopf von einer minimalen Versorgungsspannung am Vierkanaleingangsmodul von 18V bei 350mA und für einen 2-Leiter Detektorkopf von 19,8V bei 25,8mA aus. Die typischen Kabeleigenschaften sind in Tabelle 5 zusammengestellt.

Tabelle 5: Kabeleige	enschaften	
Kabelquerschnitt	Typischer	Typischer
(mm ²)	Widerstand	Schleifenwiderstand
Siehe Hinweis	pro km Kabel	pro km Kabel
	(Ohm)	(Ohm)
0,5 (20)	39,0	78,0
1,0 (17)	18,1	36,2
1,5 (15)	12,1	24,2
2,5 (13)	8,0	16,0

Tabelle 5: Kabeleigenschafter

Hinweis: Ungefährer Kabelquerschnitt in AWG (American Wire Gauge) steht in Klammern.

Kabellängen sind gemäß den Gleichungen aus den Anweisungen für die Detektoren sowie gemäß den oben dargestellten Kabel- und Vortexeigenschaften zu bestimmen.

Vortex ist mit einer Reihe von internen und externen Erdungsklemmen zum Auflegen der Schutzerde und der Abschirmung ausgestattet. Weitere Informationen zu Erdung siehe Anhang F.

Für Vortex wurden EMV Prüfungen durchgeführt und das Gerät entspricht den EMV Richtlinien unter Verwendung folgender Kabel- und Durchführungskonfigurationen:

- SWA Kabel und SWA Durchführungen mit elektrischem Anschluss der Abschirmung zum Gehäuse über die Durchführung
- Abgeschirmte Kabel dessen Abschirmung innerhalb des Gehäuses über eine Anschlussfahne an der Durchführung oder mit Abschluss am Erdungsbolzen aufgelegt ist.
- Abgeschirmte Kabel mit EMV Durchführungen bei denen die Abschirmung über die Durchführung am Gehäuse geerdet ist. Das Vortex Standardgehäuse ist mit Kabeleingängen mit Ausbrechdeckel (18 auf der Oberseite und 18 auf der Unterseite) ausgestattet. Diese können über eine M20 Standardkabeldurchführung montiert werden.

3.7 Schutzschalter

Wenn das Gerät dauerhaft an eine Netzstromversorgung angeschlossen wird, muss ein Schutzschalter in die Installation integriert werden, um die Vorschriften von En61010-1 (Niederspannungsrichtlinie) zu erfüllen.

Der Schutzschalter muss in der Nähe der Vortexsteuerung angebracht werden und für den Bediener leicht zu erreichen sein. Er muss als Unterbrechungselement für die Vortexsteuerung gekennzeichnet werden.

Der Schutzschalter muss den geltenden Vorschriften der IEC 947-1 und IEC 947-3 entsprechen. Die Schutzerde darf durch das Einspringen des Schutzschalters nicht getrennt werden.

3.8 Nulleinstellung und Kalibirierung der Vortexsteuerung

3.8.1 Allgemein

Die Kalibrierung muss für jeden Detektor separat und an dem entsprechenden Vierkanaleingangsmodul im Vortex System erfolgen. Kalibrieren Sie zunächst den Detektor. Zum Vorgehen beachten Sie bitte die Anweisungen zu Installation, Betrieb und Wartung für den jeweiligen Detektor. Stellen Sie sicher, dass örtliche Gesetze und Verfahrensregeln immer eingehalten werden.

Kalibriergas und Zubehörteile sind von Crowcon erhältlich. Untenstehende Anweisungen beschreiben die Kalibrierung des Anzeigemoduls. Vergewissern Sie sich, dass Sie mit den Funktionen des Anzeigemoduls (Abschnitt 4.6) und dem Kanalprüfmodus (Abschnitt 7.4) vertraut sind, bevor Sie beginnen.

Wenn Sie VortexPC verwenden, bietet Ihnen die Software Nullstellungs- und Kalibrierungsassistenten für eine leichte Durchführung der Kalibrierung. Für Vortex DIN ist diese Methode zwingend. Details siehe VortexPC Hilfe.

Wenn Sie die Kalibrierung eines Vierkanaleingangsmoduls und eines Detektors zum ersten Mal durchführen, empfiehlt Crowcon, dass hier zwei Personen anwesend sind. Eine Person sollte sich am Detektor befinden, die andere an der Schalttafel. Wenn nun der Detektor am Einsatzort mit Gas beaufschlagt wird, kann die Person an der Schalttafel durch Beobachtung der Gasmessungen am Anzeigemodul oder dem angeschlossenen PC prüfen, ob der Detektor am richtigen Vierkanaleingangsmodul angeschlossen ist.

3.8.2 Verfahren zu Nullstellung und Kalibrierung

Zur Einstellung des Nullwerts und Kalibrierung des Vierkanaleingangsmoduls für einen Kanal mithilfe der Anzeigemodultasten gehen Sie wie folgt vor:

- 1. Sperren Sie das Vierkanaleingangsmodul des zu kalibrierenden Kanals indem Sie die entsprechende ZONE INHIBIT (Zone sperren) Taste auf der Rückseite des Anzeigemoduls drücken. Die Kalibrierung kann auch ohne eine Sperrung des Kanals durchgeführt werden, jedoch besteht dabei die Gefahr, dass akustische und optische Warnsignale ausgelöst werden.
- 2. Stellen Sie sicher, dass der entsprechende Detektor den Nullwert misst (4mA bei einem Gasdetektor.
 - Bei einem Sauerstoffdetektor muss der Sensor vom Stromverstärker am Detektorkopf getrennt werden. Bei intelligenten Sauerstoffdetektoren beachten Sie bitte die Anweisungen zu Installation, Betrieb und Wartung für den Detektor.
 - Andere Gasdetektoren sollten nicht in geschlossenen Räumen aufgestellt werden.
 - Bei anderen Geräten mit 4-20mA ist zu gewährleisten, dass der Eingangsstrom 4mA beträgt.
 - Bei einer Feuerdetektorschleife, trennen Sie die Stromverbindung der Feuerschleife am Vierkanaligen Eingangsmodul.
- 3. Wählen Sie mit den Tasten HOLD (Halten) und STEP (Weiter) den einzustellenden Kanal.
- 4. Sobald das Display den richtigen Kanal anzeigt, drücken Sie die Taste CHANNEL TEST (Kanalprüfung) auf dem Anzeigemodul. Das Display zeigt dann GL für Gasdetektor oder FL für Feuerdetektor zusammen mit dem Messwert an (dieser sollte nahe Null sein).
- 5. Drücken Sie dann die Taste ZERO (Null). Nun sollte das Display 0 anzeigen.

Vortex Handbuch

Tritt ein E008 Fehler auf, deutet dies darauf hin, dass das eingehende Signal zu weit von nominalen Nullwert entfernt ist und somit nicht kompensiert werden kann. Überprüfen Sie, ob der Detektor richtig angeschlossen und die Schalteinstellung für Detektortyp am Vierkanaligen Eingangsmodul richtig ist und ob der Detektoreingang 4mA beträgt oder (bei einer Feuerschleife) offen ist.

- 6. Nach erfolgreicher Nullstellung, schließen Sie den Sensor (nur bei Sauerstoffdetektoren) oder den Stecker (nur bei Feuerdetektoren) wieder an.
- 7. Sauerstoffdetektoren müssen an freier Luft aufgestellt werden. Vergewissern Sie sich, dass am Display GL sowie der aktuelle Gasmesswert angezeigt wird. Warten Sie, bis sich dieser Messwert stabilisiert hat.

Beanschlagen Sie andere Gasdetektoren mit Kalibriergas (normal halbe Konzentration, aber mindestens 20% der vollen Konzentration). Vergewissern Sie sich, dass am Display GL sowie der aktuelle Gasmesswert angezeigt wird. Warten Sie, bis sich der Detektor stabilisiert hat (normalerweise zwei Minuten).

Bei einem Feuerdetektor integrieren Sie ein Amperemeter in den Schaltkreis des Kanals. Vergewissern Sie sich, dass am Display FL angezeigt wird und betätigen Sie einen Handfeuermelder. Wenn in dem Schaltkreis kein Handfeuermelder integriert ist, lösen Sie den Alarm am Detektor über eine Rauchpatrone aus.

- 8. Drücken Sie die Taste CAL (Kalibrieren) am Anzeigemodul. Das Display zeigt den Messwert an, den der Detektor gemäß Vortex misst.
- 9. Stellen Sie den angezeigten Messwert mithilfe der Tasten -HOLD und +STEP auf den korrekten Messwert ein.
 - Bei einem Sauerstoffdetektor in freier Luft kalibrieren Sie einen Messwert von 20,9% Vol.
 - Bei anderen Detektoren sollte der Kalibriertwert des beaufschlagten Kalibriergases verwendet werden.
 - Bei anderen 4-20mA Geräten sollte der Kalibrierwert der jeweils angewendeten Kondition verwendet werden.
 - Bei einem Feuerdetektor ist der Messwert des Amperemeters im Schaltkreis zu verwenden.
- 10. Drücken Sie ACCEPT/RESET. Das Display sollte die Konzentration des Kalibriergases (bei einem Gasdetektor) oder den Strom in mA (bei einem Feuerdetektor) anzeigen. Tritt ein E009 Fehler auf, deutet dies darauf hin, dass der mA Ausgang vom Detektor zu stark vom erforderlichen Messwert abweicht und somit nicht kompensiert werden kann. Überprüfen Sie die Detektorkalibrierung.
- 11. Nun sind der Detektor und das Vierkanaleingangsmodul korrekt konfiguriert und kalibriert.
 - Bei Gasdetektoren (nicht Sauerstoffdetektoren) können Sie nun das Kalibriergas entfernen.
 - Bei einem Feuerdetektor können Sie das Amperemeter entfernen und die Feuerschleife wieder anschließen.
- 12. Drücken Sie die Taste RUN am Anzeigemodul um den Kanalprüfmodus zu verlassen.
- 13. Heben Sie sämtliche Sperrungen durch Drücken der Taste ZONE INHIBIT auf.
- 14. Bei Bedarf wählen Sie einen anderen Kanal und wiederholen Sie diesen Vorgang, bis alle Kanäle kalibriert sind.

4 TECHNISCHE INFORMATIONEN : VORTEX

4.1 Allgemein

Dieses Kapitel enthält detaillierte technische Informationen zu den Vortex Modulen, die Sie während der Installation, Konfiguration und Wartung des Vortex Systems benötigen. Wenn Sie Vortex allein für die Überwachung von und Reaktion auf Warnmeldungen verwenden, müssen Sie diese Kapitel nicht lesen. Siehe dazu Kapitel *6. Betrieb*.

4.2 Knotensteuermodul

4.2.1 Funktionen des Knotensteuermoduls

Dieses Modul steuert den Betrieb des Vortex zur Sammlung der Kanalmessungen von den Vierkanaleingangsmodulen. Nach Korrektur der Nulleinstellung und der Kalibrierung berechnet das System die Detektorwerte und vergleicht sie mit den Alarmgrenzwerten. Auf Grundlage der korrigierten Eingänge steuert es die Anzeigen, berechnet die angewählten Ausgänge und aktiviert die Relaisausgangsmodule. Außerdem analysiert es den Stromversorgungs- und Batteriestatus. Das Knotensteuermodul enthält die Konfiguration des Systems, die im nichtflüchtigen FRAM gespeichert ist.

Das Knotensteuermodul zeichnet Ereignisdaten auf und steuert die Kommunikation zwischen Modulen sowie Kommunikation mit externen Geräten über das Modbus Protokoll.

Abbildung 3 bietet einen allgemeinen Überblick über das Knotensteuermodul. Abbildung 17 (Anhang B) zeigt die elektrischen Anschlüsse des Knotensteuermoduls.

RIBBON CABLE CONNECTOR (A)	STECKER FÜR FLACHBANDKABEL (A)
RS-485 TERMINALS (B)	RS-485 KLEMMEN (B)
OK LED (C)	OK LED (C)
FAULT LEDs (D)	FEHLER LEDs (D)
TXD LED (E)	TXD LED (E)
RXD LED (F)	RXD LED (F)
CONFIG SOCKET (G)	KONFIGURATIONSBUCHSE (G)
ACCEPT/RESET SWITCH (H)	ACCEPT/RESET (Bestätigen/Zurücksetzen)
	SCHALTER (H)
LAMP TEST SWITCH (I)	LAMP TEST SCHALTER (I)
SWITCH INPUT TERMINALS (J)	SCHALTEREINGANGSKLEMMEN (J)

4.2.2 Anzeigen, Schalter und Steckverbindungen des Knotensteuermoduls

Tabelle 6: Anzeigen, Schalter und Steckverbindungen des Knotensteuermoduls

Die Buchstaben beziehen Sie auf die Bezeichnungen in Abbildung 3.

Stecker für Flachbandkabel	Stellt die Verbindung zum Anzeigemodul (falls
(A)	vorhanden) und dem Stromüberwachungsmodul her.
RS485 Schnittstellen (B): Siehe Schaltplan,	Diese Schnittstellen sind für den Anschluss von PCs,
Abbildung 17	SPS und verteilte Steuersysteme zur Fernüberwachung
	des Systems vorgesehen. Hierfür wird das Modbus
	RTU Slave Protokoll mit 9600 Baud genutzt
	(Addressliste ist auf der Anwendung vorhanden)
	Es sind zwei Stecker vornanden, um eine serielle
	Vortex Systeme), die elektrische verbunden sind, zu
	ermöglichen Das Vortex Gerät am Ende einer
	Modbuskette kann mit dem zweiten Stecker eine
	Abschlussschaltung (120 Ohm) einbinden
OK LED (C)	Diese LED blinkt einmal pro Sekunde und zeigt somit
	normalen Betrieb an.
Fehler LEDs (D)	Diese LEDs leuchten normalerweise nicht. Sie zeigen
	einen Code für Systemfehler an (siehe Abschnitt 6.4.3).
	Wenn mehr als ein Fehler ansteht, werden die Codes
	nacheinander angezeigt.
TXD LED (E)	Diese LED leuchtet normalerweise permanent und
	blinkt, wenn das Knotensteuermodul Daten über die
	RS485 oder RS232 Schnittstellen übermittelt.
RXD LED (F)	Diese LED leuchtet normalerweise permanent und
	blinkt, wenn Daten über die RS485 oder RS232
	Schnittstellen emplangen werden.
	Ein interner Schaligeber ertont, um Alarme, Fenier,
	Bestatigungen eines Tastendrucks, etc. anzuzeigen.
	Mithilfe von VortexPC kann der Schallgeber
	ausgeschaltet werden.
Konfigurationsbuchse (RS232	Hier kann ein Personal Computer für die VortexPC
Schnittstelle)	Software zur Konfiguration des Vortex Systems
(G)	angeschlossen werden. Wenn ein Stecker eingesteckt
	wird, wird die RS485 Schnittstelle gesperrt. Daher
	empfiehlt Crowcon, diesen Anschluss nicht für die
	Routineüberwachung zu verwenden.
Accept/Reset (H)	Dieser Schalter hat die gleiche Funktion wie die
	ACCEPT/RESET Taste auf dem Anzeigemodul (siehe
	Abschnitt 4.6).
Systemlampenprüfung (I)	Dieser Schalter hat die gleiche Funktion wie die LAMP
	TEST Taste auf dem Anzeigemodul (siehe Abschnitt
	4.6).

Die Accept/Reset-Klemmen 7 und 8 können verbunden werden, um Accept/Reset, also Bestätigung und Zurücksetzen auszulösen, siehe hierzu Accept/Reset oben. Die Lamp Test-Klemmen 10 und 11 können verbunden werden, um eine Systemlampenprüfung auszulösen, siehe hierzu Systemlampenprüfung oben. Die Hot Swap-Klemmen 9 und 12 können verbunden werden, um andere Module austauschen zu können,
ohne das Fehler auftreten. Siehe Abschnitt 7.7.

4.2.3 Konfiguration des Knotensteuermoduls

Das Knotensteuermodul bietet keine benutzerkonfigurierbaren Einstellungen. Der Buswahlschalter steht immer auf Position 1.

Folgende Systemeigenschaften können mit VortexPC konfiguriert werden. Wählen Sie die Option Systemkonfiguration im Vortex Menü.

Eigenschaft	Konfiguration
Systembezeichnung	16-stellige Zeichenfolge zur Benennung des
Fraischaltan	Systems Umenringen auf
	Warn diese Ordien erstet ist mind den erste
Alarm Ein/Aus	wenn diese Option gesetzt ist, wird der erste
	Kanal, der einen Alarm auslöst, dauerhaft am
	Display angezeigt. Die Hold LED blinkt. Das
	Display wird in dieser Anzeige gehalten bis die
	RUN Taste gedrückt wird, auch wenn andere
	Kanäle ebenfalls in Alarm gehen.
Sperrung der Gerättasten	J/N. Wenn J, sind die CAL, ZERO, PEAK
	HOLD CAL, CHANNEL TEST Tasten gesperrt.
Sperrung des internen Schallgebers	J/N. Wenn J, ist der interne Schallgeber gesperrt.
Modbusadresse	Modbusadresse des Vortex im System.
	Normalerweise 1, es sei denn es handelt sich um
	ein Mehrpunktsystem.
Anzahl der Vierkanaligen Eingangsmodule	1, 2 oder 3
Anzahl der Relaisausgangsmodule	0, 1, 2, 3 oder 4

 Tabelle 7: Systemkonfigurationseigenschaften

4.3 Die Busschiene und elektrische Anschlüsse

Die Vortexmodule (ausgenommen des Anzeigemoduls und den Stromversorgungsteilen) sind auf einer Busschiene angebracht, die als Festplatte fungiert und die erforderliche Stromversorgung der und Kommunikation mit den Modulen übernimmt, siehe Abbildung 4: Aufbaudetails der Busschiene. Die Bus-Leiterplatte befindet sich auf einer DIN Schiene und bildet somit die Baugruppe der Busschiene.

Das Knotensteuermodul, die Vierkanaleingangsmodule und die Relaisausgangsmodul haben Stecker, die in die Buchsen auf der Bus-PCB passen, sowie Klammern zur Befestigung auf der DIN Schiene. Abbildung 1 zeigt, wie die Module auf der Busschiene angeordnet sind. Die Anweisungen zu Montage und Demontage der Module auf der Schiene finden Sie in Abschnitt 7.8.

Die Busschiene erhält Gleichstrom von dem Stromüberwachungsmodul über ein 2-poliges Kabel, das an der Klemme JP1 auf dem Bus angeschlossen ist, wobei Pin 1 der JP1 für den positiven Anschluss verwendet wird.

Es können zwei Busschienen in dem gleichen Schaltschrank über ein 10-poliges Busverbindungs-Flachbandkabel verbunden werden. Durch die Verwendung von zwei Busschienen kann die maximale Anzahl von Modulen in einem Vortex System verbunden werden. Ein Vortex Standardgehäuse bietet nur eine Busschiene.

Abbildung 4: Aufbaudetails der Busschiene

PAN HEAD SCREW M4 x 12 LONG	FLACHKOPFSCHRAUBE M4 x 12 LANG
BUS PCB ASSY	BUS-PCB BAUGRUPPE
BUS INSULATOR	BUS ISOLATIONSSCHIENE
TERMINAL RAIL	KLEMMENSCHIENE

4.4 Vierkanaleingangsmodul

4.4.1 Funktionen des Vierkanaleingangsmoduls

Jedes Vierkanaleingangsmodul wird zur Stromversorgung und Überwachung von bis zu 4 Detektoren verwended. Eine Liste der verfügbaren Crowcon Detektoren finden Sie in Anhang D.

Der erste Kanal jedes Vierkanaleingangsmoduls kann mit einem Gasdetektor oder maximal 20 zusammengeschalteten, herkömmlichen, schleifengespeisten Feuerdetektoren und Handfeuermeldern verbunden werden. Die restlichen Kanäle können nur mit 4-20mA Geräten verwendet werden.

Abbildung 5 bietet einen allgemeinen Überblick über das Vierkanaleingangsmodul. Abbildung 18 (Anhang B) zeigt die elektrischen Anschlüsse zwischen dem Vierkanaleingangsmodul und den Detektoren.

Die Detektoren werden an die Eingangsklemmen 1, 2, 3 und 4 angeschlossen und sind in Abbildung 5 mit den Buchstaben A bis D gekennzeichnet.

Abbildung 5: Vierkanaleingangsmodul

INPUT 1 (A)	EINGANG 1 (A)
INPUT 2 (B)	EINGANG 2 (B)
INPUT 3 (C)	EINGANG 3 (C)
INPUT 4 (D)	EINGANG 4 (D)

4.4.2 Konfigurieren des Vierkanaleingangsmoduls

Das Vierkanaleingangsmodul ist mit Schaltern für Detektorart, Auswahl und Modulauswahl sowie einem Verbindungsschalter LK11 ausgestattet. Siehe Abbildung 6

Abbildung 6: Schalter des Vierkanaleingangsmoduls

LK 11 (E)	LK 11 (E)
MODULE SELECTION (F)	MODULAUSWAHL (F)
BUS SELECTION (G)	BUSAUSWAHL (G)
DETECTOR TYPE SWITCH INPUT 1 (H)	SCHALTER FÜR DETEKTORART EINGANG 1 (H)
DETECTOR TYPE SWITCH INPUT 2 (I)	SCHALTER FÜR DETEKTORART EINGANG 2 (I)
DETECTOR TYPE SWITCH INPUT 3 (J)	SCHALTER FÜR DETEKTORART EINGANG 3 (J)
DETECTOR TYPE SWITCH INPUT 4 (K)	SCHALTER FÜR DETEKTORART EINGANG 4 (K)

Wenn das System mit Crowcon Detektoren arbeitet, sind die Vierkanaleingangsmodule bereits vorkonfiguriert. Falls Sie das System noch konfigurieren müssen, beachten Sie nachfolgende Anweisungen.

Tabelle 8: Schaltereinstellungen am Vierkanaligen Eingangsmodul

Die Buchstaben beziehen Sie auf die Bezeichnungen in Abbildung 6.

LK 11 (E)	Wenn am ersten Kanal ein Feuerdetektor über eine Zenerbarriere am Vortex System angeschlossen ist, aktivieren Sie den Jumper LK11. In allen anderen Fällen, einschließlich solchen, in denen Feuermelder direkt am Panel angeschlossen sind, bleibt der Jumper inaktiv.
Modulauswahlschalter (F)	 Legt die Kanalnummer für das Modul fest. Die physikalische Reihenfolge der Module auf der Busschiene spielt keine Rolle. Position 0 - Dieses Modul hat die Kanäle 1-4 Position 1 - Dieses Modul hat die Kanäle 5-8, wenn zwei oder drei Module verwendet werden. Position 2 - Dieses Modul hat die Kanäle 9-12, wenn drei Module verwendet werden.

Vortex Handbuch

Busauswahlschalter (G)	Steht immer auf Position 1.
Schalter für Detektorart, Eingänge 1 bis 4 (H, I, J und	Auswahl der Detektorart.
K).	Position 1 - 3-Leiter 4-20mA Source-Detektor
	Position 2 - 2-Leiter, 3-Leiter 4-20mA oder 4-20mA Sink-Detektor
	Position 3 - 2-Leiter, 0-5V
	Position 4 - Feuer (nur Kanal 1 des Moduls)

Jeder Detektorkanal wird mit der VortexPC Software konfiguriert. Wählen Sie die Option Eingangskonfiguration im Vortex Menü. Wählen Sie den gewünschten Kanal, um die aktuelle Konfiguration zu sehen. Siehe Tabelle 9.

Diese Eigenschaften gelten für alle Kanäle, unabhängig von ihrer Detektorart (ausgenommen 'Freigegeben', diese Eigenschaft ist für Kanäle, die als 'Nichtkonfigurierte Detektoren' eingestellt sind, nicht verfügbar).

Eigenschaft	Konfiguration		
Kanäle			
Bezeichnung	8-stellige Zeichenfolge zur Bezeichnung des Kanals		
Detektorart Gas	Feuer (nur Kanal 1 des Moduls)		
	Nichtkonfiguriert, wenn dem Kanal kein Detektor zugewiesen wurde		
Freigegeben	Ein/Aus. Ein Detektor muss freigegeben und konfiguriert sein, um im System zugelassen zu sein. Wenn keine teilnehmenden Detektoren vorhanden sind, wird Fehler E002 ausgegeben. Mit dieser Option kann ein Kanal aus dem System entfernt werden, selbst wenn er konfiguriert ist, z.B. bei einem defekten Detektor.		
Gasdetektoren	- ·		
Einheiten	Wählen Sie die Einheiten für die Gasdetektoren: %UEG, %VOL, ppm oder keine Einheiten		
Bereich	Für % UEG und % VOL kann der Bereich von 0 bis 1, 2, 2,5, 5, 10, 20, 25, 50 oder 100 festgelegt werden. Für ppm kann der Bereich von 0 bis 1, 2, 2,5, 5, 10, 20, 25, 50, 100, 200, 250, 500, 1000, 2000, 2500, 5000, 10000 festgelegt werden. Bei dem 10000 Bereich geht die maximale Anzeige bis 9990.		

Tabelle 9: Konfigurierbare Eigenschaften der Detektorkanäle

Technische Informationen

Eigenschaft	Konfiguration
Werte außerhalb des Bereichs -	Jede Option kann auf Info, Inhibit (Sperren) oder Fault (Fehler)
Interpret High und Interpret	eingestellt werden. Damit wird festgelegt, wie das System auf
Low	Werte reagiert, die den Bereich unter- bzw. überschreiten. Der
	Unterschreitungsbereich liegt zwischen 1 und 3mA und der
	Überschreitungsbereich liegt zwischen 21,5 ind 24,5mA.
	Info
	Wenn Interpret High auf Info gesetzt wird, zeigt das Display "Hi"
	an und der Gassollwert wird als volle Konzentration betrachtet.
	Wenn Interpret Low auf Info gesetzt wird, zeigt das Display "Lo"
	an und der Gassollwert wird als Null-Konzentration betrachtet.
	Es wird kein Fehler angezeigt. Die Hi und Lo Kennzeichnungen
	können zum Einstellen der Relaislogik verwendet werden.
	Inhibit (Sperren)
	Wenn Interpret High auf Inhibit gesetzt wird, zeigt das Display
	"In" an und der Gassollwert wird als volle Konzentration
	betrachtet.
	Wenn Interpret Low auf Inhibit gesetzt wird, zeigt das Display "In"
	an und der Gassollwert wird als Null-Konzentration betrachtet.
	Das Inhibit Signal für diesen Kanal kann zum Einstellen der
	Relaislogik verwendet werden.
	Fault (Fehler)
	Wenn einer der Bereiche (High oder Low) auf Fault gesetzt wird,
	wird jeweils bei Unterschreitung bzw. Überschreitung ein Fehler
	für den Kanal ausgegeben. Diese Option ist für die schnelle
	Erkennung von Kurzschlussfehlern (High) und
	Unterbrechungsfehlern (Low) vorgesehen.
Alarmstufen 1, 2 und 3	Die Alarmschwellen müssen innerhalb des Bereichs eines jeden
	Detektors anhand der festgelegten Einheit gesetzt werden. Die
	Alarmstufen müssen entweder als Aufsteigend oder Absteigend
	definiert werden. Die Auflösung der Alarmstufen muss gleich der
	des Vortex Systems sein.
	Es ist nicht notwendig Alarm 1 als die niedrigste Stufe und Alarm
	3 als die höchste Stufe festzulegen. Alarm 3 wird nicht angezeigt
	und löst auch den Schallgeber nicht aus.
Herabsetzung auf Nullpunkt	Ein/Aus. Die Voreinstellung ist Ein. Wenn diese Option
	ausgewählt wird, werden Messwerte von unter 3% der vollen
	Konzentration auf null herabgesetzt.
<i>Feuerdetektoren</i>	
Stromschwelle	Die Stromschweilen mussen innerhalb eines Bereichs von U bis
	oumA in der Reinenfolge Unterbrechung < Feuer < Kurzschluss
Denot Zeit	The steel werden.
Reset Zeit	Zwischen 0 und 255 Sekunden. Dies ist die Zeit, wahrend derer der
	Schleifenstrom zum Zurücksetzen eines Feuerdetektors in
	Alarmzustand nach Drucken der ACCEP1/KESE1 Taste
Stabilizionun gazzit	augeschaftet 18t.
Stabilisierungszeit	Zwischen 0 und 255 Sekunden. Dies ist die Zeit, wahrend derer
	sich ein Feuerdetektor nach einem Reset stabilisieren kann, bevor
	er wieder von funktionsfanig ist.

4.5 Relaisausgangsmodul

4.5.1 Funktionen des Relaisausgangsmoduls

Es können beliebig viele Relaisausgangsmodule an das System angeschlossen und für die Schaltung von Kanal- und Systemereignissen programmiert werden. Diese Relais werden über das Knotensteuermodul gesteuert.

Abbildung 7: Relaisausgangsmodul

OUTPUT 1 (A)	AUSGANG 1 (A)
OUTPUT 2 (B)	AUSGANG 2 (B)
OUTPUT 3 (C)	AUSGANG 3 (C)
OUTPUT 4 (D)	AUSGANG 4 (D)
RELAY LEDs (E)	RELAIS LED (E)
FAULT LED (F)	FEHLER LED (F)
LAMP TEST SWITCH (G)	LAMP TEST SCHALTER (G)
OUTPUT 5 (H)	AUSGANG 5 (H)
OUTPUT 6 (I)	AUSGANG 6 (I)
OUTPUT 7 (J)	AUSGANG 7 (J)
OUTPUT 8 (K)	AUSGANG 8 (K)

Abbildung 7 bietet einen allgemeinen Überblick über das Relaisausgangsmodul.

Tabelle 10: Merkmale des Relaisausgangsmoduls

Die Buchstaben beziehen Sie auf die Bezeichnungen in Abbildung 7.

Relais	8 einpolige Umschaltrelais (SPCO) mit Nennleistung von
	6A, 250 VAC. Für jedes Relais können Kanal, Alarm,
	Schaltung, Zeitverzögerung und Relaisart separat
	konfiguriert werden. Die Konfigurierung erfolgt über die
	VortexPC Software.
Relaisausgänge (A bis D und H bis K)	Anschluss für alle Relais 1 bis 8. Die Schließer-, Öffner-
	und Wurzelkontakte sind gemäß Anhang B, Abbildung 19
	definiert.
Gelbe LED für jedes Relais (E)	Zeigt den Relaisstatus an (LED leuchtet = eingeschaltet,
	LED leuchtet nicht = ausgeschaltet). Die Relais-Spulen
	werden permanent überwacht, sowohl im ausgeschalteten
	als auch im eingeschalteten Zustand.
Fehler LED (F)	Zeigt eine Fehlersituation an. Dies wird auch über die
	entsprechenden LEDs des Knotensteuermoduls und des
	Anzeigemoduls (falls vorhanden) angezeigt.
	Diese LED zeigt auch an, wenn ein Relaismodul nicht
	konfiguriert ist, z.B. beim Start leuchtet die LED bis die
	Knotensteuerung dem Relaismodul die Relaiskonfiguration
	übermittelt hat.
Lamp Test Schalter am Relais (G)	Wenn diese Taste gedrückt wird, werden alle LEDs am
	Relaisausgangsmodul auf Funktionalität geprüft.

4.5.2 Konfigurieren des Relaisausgangsmoduls

Die physikalische Anordnung der Module auf der Busschiene ist nicht ausschlaggebend, jedoch empfehlen wir Ihnen, das Relaisausgsngsmodul am rechten Ende der DIN Schiene zu platzieren, um Störungen in den Eingangskanälen beim Schalten großer Lasten zu vermeiden.

Tabelle 11: Schaltereinstellungen des Relaisausgangsmoduls

Die Buchstaben beziehen Sie auf die Bezeichnungen in Abbildung 8.

Modulauswahlschalter (L)	Legt fest, ob die Relais auf dem Modul als Relais 1-8, 9-16, 17-24
	oder 25-32 konfiguriert werden.
	Position 0 - Dieses Modul hat die Relais 1-8
	Position 1 - Dieses Modul hat die Relais 9-16, wenn drei oder vier
	Module verwendet werden.
	Position 2 - Dieses Modul hat die Relais 17-24, wenn drei oder
	vier Module verwendet werden.
	Position 3 - Dieses Modul hat die Relais 25-32, wenn vier Module
	verwendet werden.

Technische Informationen

Abbildung 8: Wahlschalter des Relaisausgangsmoduls

MODULE SELECTION (L) MODULAUSWAHL (L)

Relaisausgangsmodule werden in VortexPC über die Option Ausgangskonfiguration im Vortex Menü konfiguriert. Wählen Sie das gewünschte Relais, um die aktuelle Konfiguration zu sehen. Die konfigurierbaren Eigenschaften der Relais sind in Tabelle 12 aufgeführt.

Tabelle 12:	Konfigurierbare	Relaiseigenschaften
-------------	-----------------	---------------------

Eigenschaft	Konfiguration
Bezeichnung	8-stellige Zeichenfolge zur Bezeichnung des
	Relaisausgangs
Freigegeben	Ein/Aus. Ein Relais muss freigegeben und konfiguriert
	sein, um im System zugelassen zu sein. Durch entfernen
	des Hakens im Auswahlkästchen können Relais im System
	deaktiviert werden. Dies ist jedoch nur für eine temporäre
	Deaktivierung eines Relais empfehlenswert und nicht als
	Dauerlösung geeignet.
Ausgangsart	Selbsthaltend, Nicht-selbsthaltend, Selbsthalten zulässig,
	Nicht-selbsthalten zulässig, Impulsgesteuert, Reset-Impuls
	oder Nicht konfiguriert. Siehe Tabelle 13.
	Nicht verwendete Relais sollten 'Nicht konfiguriert' gesetzt
	werden.
Verzögerungszeit Einschalten	Die Verzögerungszeit, bevor das Relais aktiviert wird.
	Wenn vorhanden, von 0 bis 65535 Sekunden.
Verzögerungszeit Ausschalten	Die Verzögerungszeit, bevor ein Relais ausgeschaltet wird,
	ausgenommen bei Impulsgesteuert und Reset-Impuls. Hier
	bezeichnet es die Zeit, bevor das Relais aktiviert wird.
	Wenn vorhanden, von 0 bis 65535 Sekunden.
Einschaltzustand	Entweder, Normal eingeschaltet' oder, Normal
	ausgeschaltet' Die Voreinstellung ist ,Normal
	ausgeschaltet'.

Technische Informationen

Tabelle 13: Relaisausgangsarten

Beachten Sie, dass in den folgenden Diagrammen davon ausgegangen wird, dass die Verzögerungszeiten für Einschalten und Ausschalten für alle Ausgangsarten, ausgenommen Impulsgesteuert und Reset-Impuls, null ist.

Rising Alarr setting	n /		
Gas level ACCEPT/R	ESET		
Latching: The relay output is trueACCEPT/RESE T is pressed after the alarm condition has cleared. You can program the ON and OFF delays.			
Non-latching The relay output is true while the alarm condition is true. ACCEPT/RESET has no effect. You can program the ON and OFF delays.			

Rising Alarm setting	Einstellung - Ansteigender Alarm
Gas level	Gaswert
ACCEPT/RESET	ACCEPT/RESET
Latching:	Selbsthaltend:
The relay output is true. ACCEPT/RESET is	Der Relaisausgang ist aktiv. ACCEPT/RESET
pressed after the alarm condition has cleared.	wird gedrückt, nachdem die Alarmsituation
	behoben wurde.
You can program the ON and OFF delays.	Sie können die Verzögerungszeiten für EIN und
	AUS programmieren.
Non-latching	Nich-selbsthaltend
The relay output is true while the alarm condition	Der Relaisausgang ist aktiv, solange die
is true. ACCEPT/RESET has no effect.	Alarmsituation vorhanden ist. ACCEPT/RESET
	hat keinen Einfluss.
You can program the ON and OFF delays.	Sie können die Verzögerungszeiten für EIN und
	AUS programmieren.

Rising Alarm setting	Einstellung - Ansteigender Alarm
Gas level	Gaswert
ACCEPT/RESET	ACCEPT/RESET
Latching Acceptable:	Selbsthaltend zulässig:
The relay output is true until	Der Relaisausgang ist aktiv bis ACCEPT/RESET
ACCEPT/RESET is pressed, even if the	gedrückt wird, auch wenn die Alarmsituation noch
alarm condition has not been cleared.	nicht behoben wurde.
This option is mainly used for external	Diese Option wird hauptsächlich für externe
sounders.	Schallgeber verwendet.
You can program the ON delay.	Sie können die Verzögerungszeiten für EIN
	programmieren.
Non-latching Acceptable:	Nicht-selbsthaltend zulässig:
The relay output is true until either the alarm	Der Relaisausgang ist aktiv, bis entweder die
condition is cleared or the ACCEPT/RESET	Alarmsituation behoben wurde oder
is pressed.	ACCEPT/RESET gedrückt wird.
You can program ON and OFF delays.	Sie können die Verzögerungszeiten für EIN und
	AUS programmieren.
ACCEPT/RESET resets the relay	Durch drücken von ACCEPT/RESET wird das
immediately even if the alarm has not been	Relais sofort zurückgesetzt, auch wenn die
cleared.	Alarmsituation noch nicht behoben wurde.

Vortex Handbuch

Rising Alarm setting	Einstellung - Ansteigender Alarm
Gas level	Gaswert
ACCEPT/RESET	ACCEPT/RESET
Pulsed:	Impulsgesteuert:
You can program an ON delay and an ON time.	Sie können die Verzögerungszeit für EINschalten und die EINschaltzeit
	programmieren.
The relay is activated for the period defined by the OFF	Das Relais wird für den Zeitraum, wie durch die AUSschaltverzögerung
delay, unless the alarm clears during the ON delay.	defineirt, aktiviert, es sei denn, der Alarm wird während der
	EINschaltverzögerung behoben.
ON Delay time	Verzögerungszeit EINschalten
ON time	EINschaltzeit
Reset pulse:	Reset-Impuls:
You can program an ON delay and an OFF delay.	Sie können die Verzögerungszeiten für EIN und AUS programmieren.
The relay is activated for the period defined by the OFF	Das Relais wird für den Zeitraum, wie durch die AUSschaltverzögerung
delay after the ON delay has expired.	defineirt, aktiviert, nach-dem die EINschaltverzögerung abgelaufen ist.
Not configured:	Nicht konfiguriert:
The relay output is driven inactive. This is the default.	Der Relaisausgang ist inaktiv. Dies ist die Voreinstellung.

4.5.3 Konfigurieren der Relaislogik

Die Relaislogik verbindet Detektoren mit Relaisausgängen und wird in der VortexPC Software über die Option Relaislogik konfiguriert. Für Relais mit der Einstellung ,Nicht konfiguriert' kann die Relaislogik nicht konfiguriert werden und Kanäle deren Detektorart ,Nicht konfiguriert' ist können nicht verwendet werden. Deswegen sollten Sie alle Vierkanaleingangsmodule und Relaisausgangsmodule entsprechend konfigurieren, bevor Sie die Relaislogik konfigurieren.

Vortex Handbuch

Eigenschaft	Konfiguration
Detektor Jumperereignis (8 pro Detektor)	Jedes Jumperereignis an einem Detektor kann eines der folgenden sieben verschiedenen Ereignisse sein: Alarm 1, Alarm 2, Alarm 3, Inhibit, Fault, High Information, Low Information (bei entsprechender Konfiguration für die High und Low Bereiche eines 4-20mA Detektors)
Systemverbindungen (8 für Systemfehler und 8 für Systemschallgeber)	Die Systemfehlerereignisse und Systemschallgeberereignisse können mit einem Relais verbunden werden. Anzahl der Relaisschaltungen Die Anzahl der Schaltungen für das Relais. Dies beschreibt die Anzahl festgelegter Ereignisse (Detektorereignisse und Systemereignisse) die auftreten müssen, um das Relais auszulösen. Zum Beispiel: Wenn für ein Relais drei Detektorereignisse festgelegt wurden, bedeutet die Definition der Anzahl von Relaisschaltungen 1, dass jedes (einzelne) Ereignis das Relais auslöst.

Feuerdetektoren lösen Alarme 1, 2 und 3 bei einem Feuer aus.

Wählen Sie in VortexPC für jedes Relais den Detektor/die Detektoren und die entssprechenden Ereignisse oder Systemeigenschaften zum Auslösen des Relais aus.

4.6 Das Anzeigemodul

4.6.1 Funktionen des Anzeigemoduls

Vortex, Vortex Rack und Vortex Panel sind mit einem Anzeigemodul ausgestattet, das bei normalem Betrieb den Detektoreingang und den aktuellen Status des Systems anzeigt. Es bietet außerdem eine Möglichkeit der Steuerung vor Ort durch den Bediener über eine Reihe von Tasten - sieben auf der Rückseite und fünf auf der Vorderseite. Siehe Abbildung 9 und Abbildung 10.

Abbildung 9: Rückseite des Anzeigemoduls

RIBBON CABLE CONNECTOR (A)

STECKER FÜR FLACHBANDKABEL (A)

Abbildung 10: Vorderseite des Anzeigemoduls

Abbildung 10. Voruci seite des Anzeigemöduls		
SYSTEM FAULT LED (B)	SYSTEMFEHLER LED (B)	
POWER HEALTHY LED (C)	STROMVERSORGUNG OK LED (C)	
ZONE 3 INHIBIT LED (D)	ZONE 3 INHIBIT (gesperrt) LED (D)	
ZONE 2 INHIBIT LED (E)	ZONE 2 INHIBIT (gesperrt) LED (E)	
HOLD LED (F)	HALTEN LED (F)	
CHANNEL TEST LED (G)	CHANNEL TEST LED (G)	
INDICATION (H)	ANZEIGE (H)	
CHANNEL READING (I)	KANALMESSWERT (I)	
ZONE 1 INHIBIT LED (J)	ZONE 1 INHIBIT (gesperrt) LED (J)	
CHANNEL No. (K)	KANALNUMMER (K)	
ALARM 2 LED (L)	ALARM 2 LED (L)	
ALARM 1 LED (M)	ALARM 1 LED (M)	
FAULT LED (N)	FEHLER LED (N)	

Das gezeigte Anzeigemodul gilt für Vortex (in Standardgehäuse). Die Module für Vortex Rack und Vortex Panel weichen lediglich in der Anordnung ein wenig ab.

Vortex Handbuch

Bei Vortex und Vortex Panel ist das Anzeigemodul in der Gehäusetür eingebaut. Bei Vortex Rack ist das Anzeigemodul in einem 19" Rackpanel eingebaut. Für Vortex DIN gibt es kein Anzeigemodul und die Überwachung erfolgt über die RS485 Schnittstelle an dem Knotensteuermodul (siehe Abschnitt 4.2).

Das Anzeigemodul zeigt den Status jedes Kanals an. Wenn ein Alarm oder eine Fehlersituation erkannt wird, leuchtet die entsprechende LED am Anzeigemodul auf. Abhängig von der Konfiguration des Systems, gibt der interne Schallgeber am Knotensteuermodul ein Geräusch aus und die zugeordneten Relais arbeiten.

Details zu den Merkmalen des Anzeigemoduls finden Sie nachstehend. Die überwachte Eingangsart für jeden Kanal kann auf der Vorderseite des Anzeigemoduls durch eine Anzeige über den LEDs für den entsprechenden Kanal angezeigt werden.

4.6.2 Merkmale des Anzeigemoduls

Tabelle 15: Merkmale des Anzeigemoduls

Die Buchstaben in Klammern beziehen Sie auf die Bezeichnungen in Abbildung 9 und Abbildung 10.

Merkmal	Beschreibung
Stecker für Flachbandkabel	Dies ist die Steckverbindung zum Anschluss des Displays an das
(A)	Knotensteuermodul über das Flachbandkabel.
Systemfehler LED (B)	Die gelbe LED zeigt einen erkannten Systemfehler an. Der jeweilige
	Fehler wird über die LEDs am Knotensteuermodul angezeigt, siehe
	Abschnitt 6.4.3.
Stromversorgung OK LED	Diese LED gibt Auskunft über den Status der verschiedenen
(C)	Stromversorgungssysteme. Fehlercodes, siehe Abschnitt 6.4.2.
Zone Inhibit LEDs (D , E ,	Eine gelbe LED für jede Zone (eine Zone umfasst die Kanäle eines
und J)	Vierkanaleingangsmoduls). Zeigt an, dass die Zone oder ein Kanal in
	der Zone momentan gesperrt ist.
Halten LED (F)	Wenn die grüne LED dauerhaft leuchtet, zeigt sie damit an, dass durch
	Drücken der Halten Taste die Anzeige auf dem aktuell dargestellten
	Kanal 'festgefroren' wird.
	Wenn diese Led blinkt, zeigt dies "Umschalten auf Alarm" an. Damit
	wird derjenige Kanal (oder der erste von mehreren Kanälen) angezeigt,
	der in Alarmstatus übergegangen ist.
Channel Test LED (G)	Wenn die gelbe LED blinkt, zeigt dies an, dass sich das System im
	Kanalprüfungsmodus befindet (Abschnitt 7.4).
Einheitenanzeige LEDs	Zeigt an, in welcher Einheit der aktuell gezeigte Messwert dargestellt
(H)	wird.
Messwert (I)	Der Kanalmesswert, der in der Kanalanzeige dargestellt wird. Die Zahl
	wird in rot in einer 7-Segment-Anzeige dargestellt. Der Wert ist
	zusammen mit der Einheitenanzeige zu lesen. Zur Nutzung dieser
	Anzeige im Kanalprüfungsmodus, siehe Abschnitt 7.4.
Kanalnummer (K)	Eine grüne 7-Segment-Anzeige, die normalerweise die Nummer des
	aktuellen Kanals anzeigt. (Die anderen Kanäle werden auch ständig
	überwacht, unabhängig von der Anzeige.) Zur Nutzung dieser Anzeige
	im Kanalprüfungsmodus, siehe Abschnitt 7.4.

Technische Informationen

Merkmal	Beschreibung
LEDs für Kanalalarm 1	Rote LEDs für jeden Kanal. Leuchten, wenn der Alarmwert für den
und 2 (L und M)	Kanal erreicht wird. Die LED blinkt, wenn ein Alarm zum ersten Mal
	ausgegeben wird. Nach Drücken der ACCEPT/RESET Taste, erlischt
	die LED, wenn die Alarmsituation behoben wurde. Wenn die
	Alarmsituation bestehen bleibt, leuchtet die LED dauerhaft.
Kanalfehler LEDs (N)	Gelbe LED für jeden Kanal. Leuchtet, wenn in dem Kanal ein Fehler
	entdeckt wird. Die LED blinkt, wenn ein Fehler zum ersten Mal auftritt.
	Nach Drücken der ACCEPT/RESET Taste, erlischt die LED, wenn der
	Fehler behoben wurde. Wenn der Fehler bestehen bleibt, leuchtet die
	LED dauerhaft.
HOLD (-) Taste	Befindet sich auf der Modulvorderseite. Drücken Sie die Taste, um die
	Anzeige auf dem aktuellen Kanal ,einzufrieren'. Wird auch verwendet,
	um die Messwertanzeige im Kanalprüfungsmodus zu mindern
	(Abschnitt 7.4).
STEP (+) Taste	Befindet sich auf der Modulvorderseite. Drücken Sie die Taste, um die
	Anzeige auf den nächsten Kanal umzuschalten. Ist nur aktiv, wenn
	vorher HOLD angewählt wurde. Wird auch verwendet, um die
	Messwertanzeige im Kanalprüfungsmodus zu erhöhen (Abschnitt 7.4).
RUN Taste	Befindet sich auf der Modulvorderseite. Wird gedrückt, entweder um
	wieder alle Kanäle nacheinander anzuzeigen, nachdem vorher HOLD
	ausgewählt wurde, oder um den Kanalprüfmodus zu beenden.
ACCEPT/RESET Taste	Befindet sich auf der Modulvorderseite. Drücken Sie die Taste, um dem
	Vortex zu signalisieren, dass Sie eine aufgetretene Alarm- oder
	Fehlersituation bemerkt haben. Durch drücken dieser Taste wird der
	interne Schallgeber abgeschaltet. Wenn die Alarmsituation behoben
	wird, erlöschen sämtliche roten oder gelben LEDs in der
	Kanalstatusanzeige.
LAMP TEST Taste	Befindet sich auf der Modulvorderseite. Drücken Sie diese Taste, um
	alle LEDs am Anzeigemodul und dem Knotensteuermodul zu prüfen.
	Siehe Abschnitt 7.5.
CHANNEL TEST Taste	Befindet sich auf der Modulrückseite. Nachdem Sie über die HOLD
	Taste einen Kanal ausgewählt haben, drücken Sie die Taste Channel
	Test, um die Alarmstufen anzuzeigen (Abschnitt 7.4) oder zur
	Nulleinstellung und Kalibrierung (Abschnitte 3.8 und 7.3). Mithilfe von
	VortexPC kann diese Taste gesperrt werden.
Taste KALIBRIERUNG	Befindet sich auf der Modulrückseite. Wird zur Kalibrierung der
V. HALTEN DES	Funktion Halten des Spitzenwerts verwendet (Abschnitt 7.3). Kann
SPITZENWERTS	mithilfe von VortexPC deaktiviert werden.
CAL Taste	Befindet sich auf der Modulrückseite. Wird zur Kalibrierung verwendet
	(Abschnitt 3.8 und 7.3). Kann mithilfe von VortexPC deaktiviert
	werden.
ZERO Taste	Befindet sich auf der Modulrückseite. Wird zur Nulleinstellung
	verwendet (Abschnitt 3.8 und 7.3). Kann mithilfe von VortexPC
	deaktiviert werden.
ZONE INHIBIT Tasten	Befinden sich auf der Modulrückseite, eine Taste für jede Zone.
	Werden verwendet, um die Aktivierung der entsprechenden
	Ausgangsrelais während des Prüf- oder Kalibriervorgangs (Abschnitte
	3.8, 7.3 und 7.4) zu verhindern. Zur Sperrung einzelner Kanäle kann
	VortexPC verwendet werden. Hinweis: Die Alarm LEDs am
	Anzeigemodul werden auch in gesperrtem Zustand ausgelöst, wenn ein
	Alarm auftritt.

4.7 Stromüberwachungsmodul

4.7.1 Funktionen des Stromüberwachungsmoduls

Das Stromüberwachungsmodul ist in Abbildung 11, Seite 35 dargestellt. Das Stromüberwachungsmodul ist ein Standardbauteil des Vortex Systems.

Hinweis: Werden mehrere Vortex Rack, Vortex Panel und Vortex DIN Systeme von Crowcon verwendet, wurden die einzelnen Stromüberwachungsmodule möglicherweise durch ein übergreifendes Stromsteuerungssystem ersetzt, das den Anforderungen für EMV und der Niederspannungsrichtlinie entspricht.

Wenn Notstrombatterien verwendet werden, schaltet das System bei Ausfall der AC-Stromversorgung automatisch in den Notstrombetrieb über. Bei anhaltendem Stromausfall, wird die Batterie vom System getrennt, um eine Tiefenentladung und damit eine dauerhafte Schädigung der Batterie zu vermeiden.

Die wichtigsten Merkmale des Stromüberwachungsmoduls sind in Tabelle 16 dargelegt.

Abbildung	11:	Stromüberwachungseinheit
-----------	-----	--------------------------

0	0
MAINS INPUT (A)	NETZEINGANG (A)
DC INPUT (B)	DC-EINGANG (B)
BATTERY (C)	BATTERIE (C)
FUSES (D)	SICHERUNGEN (D)
GREEN LED (E)	GRÜNE LED (E)
LINKS (F)	JUMPER (F)
RIBBON CABLE CONNECTOR (G)	STECKER FÜR FLACHBANDKABEL (G)
TP1 & TP2 EARTH CONNECTORS (H)	TP1 & TP2 ERDUNGSANSCHLÜSSE (H)
DC OUTPUT (I)	DC AUSGANG (I)
ADDITIONAL DC OUTPUT TERMINALS (K)	ZUSÄTZLICHE DC AUSGANGSKLEMMEN (K)
RELAY OUTPUT TERMINALS (J)	RELAISAUSGANGSKLEMMEN (J)

Tabelle 16: Merkmale des Stromüberwachungsmoduls

Ecteris refer to labers in rigare 11, page	
Netz (Anschluss)	Eingang von der Netzversorgung, wenn die optionale
(A)	Stromversorgungseinheit verwendet wird. Die Nenndaten
	hierzu sind 29,5V, 150W, mit einer Eingangsspannung von
	110-120V oder 220-230VAC (geschaltet) bei 50-60Hz.
24VDC In (Anschluss)	Wenn eine externe 24VDC Stromversorgung festgelegt
(B)	wird wird die Netzstromversorgungseinheit nicht
	verwendet Eine 20-30VDC Versorgung abgesichert mit 5A
	muss zur Verfügung stehen. Das Stromüberwachungsmodul
	ist mit 24V Eiltemma ausgestettet
	Ist fint 24 v Finterung ausgestattet.
	ist.
	Wenn externe Batterien von einer externen DC-Quelle
	gespeist werden sollen, muss diese Versorgungsspannung
	mindestens 29,0V betragen.
Batterie (Anschluss)	Anschluss an Notstrombatterien. Siehe Abschnitt 4.7.4.
(C)	
5A F (zwei Sicherungen) (D)	Die untere Sicherung wird mit den Batterien verbunden
	(falls vorhanden) und die obere Sicherung wird an den DC
	Ausgang der Netzstromversorgung und den 24V DC
	Fingang (Flement B) angeschlossen
Grüne I FD (F)	Diasa I ED zaigt an dass ain DC Eingang an der
Orune LED (E)	Stromüherwechungenletine entweder von der
	Networkserver assignation and the same DC Einsen a (Element D)
	Netzversorgungseinneit oder vom DC Eingang (Element B)
	vorhanden 1st.
LK1 und LK2 (Jumper)	LK1 muss angeschlossen sein, wenn das System nicht über
(F)	Notstrombatterien verfügt. Wenn weder der Jumper, noch
	Notstrombatterien vorhanden sind, wird ständig ein
	Stromstatusfehler angezeigt.
	Wenn das System ohne eine externe Stromversorgung
	gestartet werden soll, kann LK2 kurz geschlossen werden,
	so dass das System über die vollständig geladenen Batterien
	anläuft.
Anschluss für Flachbandkabel (G)	Dieses Kabel verbindet das Knotensteuermodul (Abschnitt
	4.2) mit dem Anzeigemodul (falls vorhanden).
TP1 & TP2 Erdungsanschlüsse (H)	Wenn Vortex in einem Standardgehäuse eingebaut ist, ist
	das Gehäuse vom Nullleiter isoliert und der
	Erdungsanschluss an TP2 hergestellt. Die Verbindung wird
	henötigt für Systeme hei denen der Nullleiter vom Gehäuse
	isoliert ist. Wenn für das System der Nullleiter am Gehäuse
	angeschlossen werden soll stellen Sie die Verbindung über
	TP1 her. Weitere Details zu Frdung siehe Anhang F
	DC Augang - Dies ist der Augang aus dem
	Stromüberwachungsmodul zur Varbindung mit dar Dus
	Deveryment sicks Absolutit 4.2
	Daugruppe, siene Abschnitt 4.3.

Letters refer to labels in Figure 11, page 35.

Relaisausgang für DC-/Netz-Ausfall	Hier wird der Status des DC Eingangs des
(J, 3 Anschlüsse links außen)	Stromüberwachungsmoduls angezeigt. Dieser Eingang
	kommt entweder von einer Netzstromversorgungseinheit
	oder von den 24VDC In Klemmen. Das Relais ist
	normalerweise eingeschaltet und schaltet ab, wenn kein DC-
	Eingang vorliegt.
Relaisausgang für Batterie (getrennt)	Batterien müssen gegen Tiefenentladung geschützt werden,
(J, 3 Anschlüsse in der Mitte)	da dies zu dauerhafter Schädigung und damit zu kürzerer
	Lebensdauer der Batterie führt. Wenn die
	Klemmenspannung der Batterie unter 20V sinkt, löst dieses
	Relais aus. Es trennt die Batterieversorgung vom Rest des
	Vortex Systems. Das Relais bleibt eingeschaltet, bis die
	Spannung unterhalb den Schwellenwert fällt. Es wird dann
	erst wieder eingeschaltet, wenn die Spannung an der
	Batterieklemme auf ungefähr 26V steigt.
Relaisausgang für niedrigen	Dieses Relais zeigt an, wenn die Klemmenspannung der
Batterieladestatus (J, 3 Anschlüsse	Batterie unter 22 V sinkt, was ein Anzeichen dafür ist, dass
rechts außen)	die Batterie das Ende ihrer Ladekapazität bald erreicht hat.
	Das Relais bleibt eingeschaltet, bis die Spannung unterhalb
	den Schwellenwert fällt. Es wird dann erst wieder
	eingeschaltet, wenn die Spannung an der Batterieklemme
	auf ungefähr 26V steigt.
24VDC Out (Anschlüsse) (K)	Das Gerät verfügt über vier 500mA elektronisch gesicherte
	Ausgänge, die zum Betrieb von Zusatzgeräten und
	zusammen mit den Relaismodulen zum Betrieb von
	akustischen/optischen Warnsignalen verwendet werden
	können Die Ausgänge haben je nach DC Eingang eine
	Spannung von 19-29V mit einem Spannungsabfall von 0,6-
	0,7V. Normalerweise beträgt die Spannung 28,5V.

4.7.2 Trennung des vorkonfektionierten 5-poligen Kabels

Das Stromüberwachungsmodul muss vom System getrennt sein. Lösen Sie die 4 Schrauben von an den Ecken der Abdeckung des Stromüberwachungsmoduls und nehmen Sie den Deckel von der Leiterplatte ab. Ziehen Sie den 5-poligen Kabelstecker von der Leiterplatte ab. Setzen Sie den Deckel wieder auf die Leiterplatte des Stromüberwachungsmoduls.

4.7.3. Montage des Stromüberwachungsmoduls auf einer DIN Schiene

Das Stromüberwachungsmodul kann mithilfe der mitgelieferten Adapterplatte und Klammern auf einer DIN Schiene montiert werden. Dies gilt nicht für Vortex. Verschrauben Sie die Adapterplatte in der gewünschten Ausrichtung mit den Klammern. Schrauben Sie dann das Stromüberwachungsmodul an die Adapterplatte, siehe Abbildung 12. Schieben Sie die Klammern über die DIN Schiene bis sie hörbar einrasten.

Abbildung 12: Alternative Montage des Stromüberwachungsmoduls

DIN RAIL	DIN SCHIENE
ADAPTOR PLATE	ADAPTERPLATTE
POWER MONITORING MODULE	STROMÜBERWACHUNGSMODUL

4.7.4 Notstrombatterien

Über das Stromüberwachungsmodul können zwei verkapselte 12V Blei-Säure-Batterien, 2Ah mit 0,25A, in Reihenschaltung für 24 VDC geladen und überwacht werden. Wenn die Netzstromversorgung ausfällt, schaltet das System automatisch auf Notstromversorgung über die Batterien um. Das wird anhand der Stromstatus LED am Anzeigemodul angezeigt. Bei anhaltendem Stromausfall, wird die Batterie vom System getrennt, um eine Tiefenentladung und damit eine dauerhafte Schädigung der Batterie zu vermeiden.

Im Vortex Standardgehäuse werden diese Batterien hinter dem Stromüberwachungsmodul eingebaut. Zwischen den beiden Batterien hinter dem Stromüberwachungsmodul befindet sich eine 10A Leitungssicherung. Anweisungen zum Tauschen der Batterien, siehe Abschnitt 7.9.

Größere Batterien oder externe Notstromversorgungssysteme können je nach Bedarf geliefert und eingebaut werden. Die Details hierzu würden jedoch den Rahmen dieses Handbuchs sprengen. Weitere Informationen finden Sie im technischen Datenblatt, das mit dem System mitgeliefert wird.

HINWEIS: Wenn externe DC Stromversorgungen verwendet werden, sind diese über den DC Eingangsanschluss, **NICHT** über den Batterieeingang zu verbinden.

4.7.5 Stromausfall

Bei totalem Stromausfall werden alle Daten der Systemkonfiguration im nichtflüchtigen FRAM im Knotensteuermodul geschützt. Protokolldaten sind nicht geschützt und gehen verloren.

Der Stromstatus wird über die Stromversorgung OK LED am Anzeigemodul angezeigt, falls vorhanden.

Die Detektoren benötigen eine Aufwärmzeit, bei Erstanschluss oder Wiederanschluss der Stromversorgung nach einem Stromausfall. Während dieses Zeitraums sind die Signale nicht unbedingt zuverlässig.

5 TECHNISCHE INFORMATIONEN : FELDGERÄTE

5.1 Allgemein

Dieses Kapitel enthält detailierte technische Informationen zur Anwendung von Feldgeräten (Detektoren und akustische bzw. optische Alarmgeräte) zusammen mit Vortex. Diese Informationen können für die Installation, Konfiguration oder Wartung des Vortex Systems hilfreich sein. Wenn Sie Vortex allein für die Überwachung von und Reaktion auf Warnmeldungen verwenden, müssen Sie diese Kapitel nicht lesen. Siehe dazu Kapitel *6. Betrieb*.

5.2 Gasdetektoren

5.2.1 Positionierung von Gasdetektoren

Es gibt keine Regeln, die die Positionen und Standorte von Detektoren vorschreiben. Eine umfassende Orientierungshilfe bietet jedoch die Norm:

• BS EN 50073:1999, Leitfaden für Auswahl, Installation, Einsatz und Wartung von Geräten für das Aufspüren und die Messung brennbarer Gase oder von Sauerstoff.

Ähnliche Regelungen und Anleitungen können für andere Länder verwendet werden. Darüber hinaus veröffentlichen bestimmte Regulierungsbehörden Datenblätter zu minimalen Anforderungen an die Gasdetektion für spezifische Anwendungen.

Ein Detektor ist dort aufzustellen oder zu montieren, wo gas am wahrscheinlichsten auftritt. Bei der Standortwahl/Positionierung von Gasdetektoren sind folgende Punkte zu beachten:

- Zum Aufspüren von Gasen, die leichter sind als Luft, zum Beispiel Methan, sollten Detektoren in einer gewissen Höhe aufgestellt werden. Crowcon empfiehlt die Verwendung von Fangtrichtern.
- Zum Aufspüren von Gasen, die schwerer sind als Luft, zum Beispiel Butan, sollten Detektoren an einem niedrigen Standort aufgestellt werden. Weitere Informationen erhalten Sie von Crowcon.
- Zum Aufspüren von Gasen, die etwa gleich schwer sind als Luft, zum Beispiel Schwefelwasserstoff, sollten Detektoren in normaler Atemhöhe aufgestellt werden.
- Zur Aufstellung von Sauerstoffsensoren, muss das Gas, das den Sauerstoff verdrängt, bekannt sein. Zum Beispiel: Kohlenstoffdioxid ist schwerer als Luft und verdrängt Sauerstoff somit in niedrigen Bereichen. Unter diesen Umständen muss der Sauerstoffdetektor also in Bodennähe positioniert werden.
- Bei der Aufstellung von Detektoren, müssen mögliche Schäden durch Naturereignisse wie Regen oder Überschwemmung in Betracht gezogen werden. Für Geräte die in Außenbereichen montiert werden, empfiehlt Crowcon die Verwendung witterungsbeständiger Abdeckungen oder Sprühnebelschutzbleche.
- Achten Sie auf leichten Zugriff für Funktionsprüfungen und zu Wartungszwecken.
- Ziehen Sie in Betracht, wie austretende Gase sich aufgrund natürlicher oder künstlich erzeugter Luftströmungen verhalten. Falls möglich, montieren Sie Detektoren in Lüftungsschächten.

Vortex	Handbuch
1 OI ton	runaouon

• Bedenken Sie auch die Prozessbedingungen. Gase, die zwar normalerweise schwerer sind als Luft, jedoch aus einer Prozessstraße bei sehr hohen Temperaturen und/oder unter Druck austreten, können eher aufsteigen als fallen.

Die Positionierung der Sensoren sollte nach eingehender Beratung mit Fachleuten mit speziellen Kenntnissen über Gasverteilung, mit Experten mit Detailkenntnissen der Prozessanlage und der betroffenen Ausrüstung sowie mit sicherheitstechnischem Personal festgelegt werden. **Die Vereinbarung über die Standorte der Sensoren sollte schriftliche festgehalten werden.** Crowcon hilft Ihnen gerne bei der Auswahl und Positionierung von Gasdetektoren.

5.3 Feuerdetektoren

Pro Vierkanaleingangsmodul darf nur eine Feuerschleife angeschlossen werden, und diese darf auch nur über den ersten Eingangskanal verbunden werden. Es können jedoch bis zu 20 Detektoren gleichzeitig, z.B. Apollo Baureihe 60, auf der gleichen Schleife verwendet werden. Die Feuerschleife kann auch zur Verbindung andere geschalteter Geräte, wie zum Beispiel Handfeuermelder, dienen. Es können auch verschiedene Geräte auf eine Schleife kombiniert werden. Voraussetzung ist lediglich, dass die elektrischen Kennwerte kompatibel sind und die Brandschutzregeln dies zulassen.

Für alle Feuerschleifen wird ein 1,8 kOhm Abschlusswiderstand benötigt (Rt in Abbildung 13). Einfache Schaltgeräte, wie Handfeuermelder benötigen einen 470 Ohm Reihenwiderstand (Rm in Abbildung 13).

Eine Feuerdetektorschaltung kann auch über einen äquivalenten Kreis mit einem Schalter in Reihe mit einem Sensorwiderstand nachgebildet werden (Rs in Abbildung 13).

Abbildung 13: Darstellung eines Feuerdetektorkreises

To quad channel module fire sensor input	Zum Feuersensoreingang des Vierkanalmoduls
Equivalent circuit of fire sensor	Äquivalenter Kreis eines Feuersensors
Manual call point	Handfeuermelder
End of line resistor	Abschlusswiderstand

Wenn keiner der Detektoren in Alarm ist (alle Schalter offen) fließt ein geringer Strom im Kreis zum Abschlusswiderstand (Rt). Wenn ein Kurzschluss oder ein Unterbrechungsfehler durch Kabelbruch auftritt, steigt bzw. fällt der Strom in der Schleife. Das Vierkanaleingangsmodul erkennt dies und löst einen Fehleralarm aus.

Feldgeräte

Wenn ein Feuer erkannt wird (entweder der Schalter des Feuerdetektors schließt oder ein Handfeuermelder wird betätigt) verändert sich der Strom, der in der Schleife fließt, das Vierkanaleingangsmodul erkennt dies und löst einen Feueralarm aus.

Abbildung 18 in Anhang B zeigt die elektrischen Anschlüsse des Vierkanaleingangsmoduls. Wichtige Informationen zur Erdung siehe Anhang F.

5.3.1 Positionierung von Feuerdetektoren

Die Beschreibung der Regeln und Vorschriften zur Installation vor Branderkennungs- und Brandmeldeausrüstung geht über den Umfang dieses Handbuchs hinaus. Holen Sie sich hierzu Rat und Anweisungen von der entsprechenden Behörde im betreffenden Land bevor Sie Feuererkennungsanlagen installieren.

Bei Bedarf bietet Crowcon Ihnen weitere Informationen und Empfehlungen.

5.4 Anschluss von akustischen/optischen Alarmen

Vortex kann über jeden der Relaisausgänge akustische und optische Warnsignale schalten. Jedes der 20-29,5 VDC Feldgeräte (bis zu maximal 500mA) kann über die zugewiesenen DC Ausgänge auf dem Stromüberwachungsmodul betrieben werden.

Wichtige Informationen zur Erdung siehe Anhang F. Wenn Sie eine detailliertere Beratung wünschen, wenden Sie sich bitte an Crowcon.

6.1 Allgemein

Dieses Kapitel beschreibt den Gebrauch des Vortex Systems zur Überwachung und Anzeige von Fehlern und Alarmsituationen.

Der Systemstatus kann über das Anzeigemodul oder über ein externes System mit digitalen Kommunikationsschnittstellen, zum Beispiel ein DCS (verteiltes Steuersystem) überwacht werden. Die Informationen hierin betreffen hauptsächlich das Vortex Anzeigemodul.

Der Betrieb des Schallgebers und der Relais hängt von der Konfiguration der Relaislogik (siehe Abschnitt 4.5.3) ab. Die genauen Daten zu den von Crowcon konfigurierten Systemen finden Sie im Datenblatt. Alle Details zu den Anzeige- und Bedienelementen des Anzeigemoduls finden Sie in Abschnitt 4.6.

6.2 Überwachung mit dem Anzeigemodul

Im normalen Betrieb sind alle LEDs in der Kanalstatusanzeige AUS. Das System schaltet sich durch die Kanäle und zeigt die Messwerte jedes Kanals drei Sekunden lang nacheinander an. Die Kanalnummer erscheint grün und der Messwert des Kanals wird in rot angezeigt. Die Einheiten in denen die Konzentration gemessen wird, werden über die leuchtende grüne LED rechts neben dem Anzeigedisplay dargestellt.

Bei Gasdetektoren kann die Konzentration in %UEG (Prozentwert der unteren Explosionsgrenze), %VOL (Volumenprozent) oder PPM (Parts per million (Teile pro Million)) angegeben werden. Diese Einheiten können über VortexPC konfiguriert werden.

HINWEIS: Die Gaserkennung erfolgt permanent und auf allen Kanälen. Das Display zeigt lediglich den Messwert eines bestimmten Kanals an. Dies hat jedoch keinerlei Einfluss auf diesen Kanal.

Bei Feuerdetektoren, zeigt das Display eine Reihe von Bindestrichen an, wenn auf dem angezeigten Kanal keine Alarmsituation herrscht. Das Wort FEUER wird in der grünen LED Anzeige rechts neben dem Display angezeigt.

Um das Durchschalten durch die Kanäle anzuhalten, und den Messwert eines bestimmten Kanals dauerhaft anzuzeigen, drücken Sie die Taste HOLD, wenn der gewünschte Kanal angezeigt wird. Während die Anzeige auf einem Kanal gehalten wird, leuchtet die grüne LED neben der HOLD Taste.

In diesem Haltemodus können Sie sich die Messwerte der anderen Kanäle anzeigen lassen und die Anzeige dauerhaft auf einem gewünschten Kanal halten, indem Sie die Taste STEP drücken, bis der gewünschte Kanal erscheint.

Um in den Umschaltmodus zurückzukehren, drücken Sie die Taste RUN. Die Hold LED erlischt.

6.3 Alarmzustände und Fehler

6.3.1 Anzeigemodul

Wenn einer der Kanäle eine Alarm-1 oder Alarm-2 Situation erkennt, blinkt die zu dem Kanal gehörige LED am Anzeigemodul. Bei Alarm-3 werden keine LEDs aktiviert.

Gleichzeitig gibt das Kanaldisplay die Anzeige des Kanalmesswerts für den betreffenden Kanal aus. (Dies wird als "Umspringen auf Alarm" bezeichnet und kann auch deaktiviert werden: siehe Anhang E.) Die LED neben der Hold Taste blinkt um anzuzeigen, dass die Anzeige auf diesem Kanal gehalten wird. Wenn weitere Kanäle in Alarmzustand gehen, blinken die jeweiligen roten LEDs in der Kanalstatusanzeige, aber das Kanaldisplay wird auf dem Kanal gehalten, der als erster in Alarmzustand war. Dadurch ist es möglich zu bestimmen, welcher Kanal zuerst in Alarmzustand versetzt wurde. Somit können die Fehlerquellen oder Alarmursachen leichter lokalisiert werden.

Wenn ein Alarm von einem Feuerdetektor ausgelöst wurde, steht in der Anzeige das Wort "FIRE".

Wenn einer der Kanäle eine Fehlersituation erkennt, blinkt die gelbe Fehler-LED des entsprechenden Kanals am Anzeigemodul und im Displayfeld erscheint der zugeordnete Fehlercode (Abschnitt 6.4.1).

Um zu bestätigen, dass Sie den Alarm oder Fehler zur Kenntnis genommen haben, drücken Sie die Taste ACCEPT/RESET. Wenn die Alarmsituation zwischenzeitlich behoben wurde, erlischt die LED. Wenn die Alarmsituation nach wie vor besteht, schaltet die LED von einem Blinken in ein Dauerleuchten um. Drücken Sie nach dem Beheben des Alarms, die ACCEPT/RESET Taste, so dass die LED erlischt.

6.3.2 Interne Schallgeber und Relais

Bei Alarmstufen 1 und 2 sowie bei Fehlern wird ein interner Schallgeber und möglicherweise Relais, je nach Relaislogikkonfiguration aktiviert (Abschnitt 4.5.3). Bei Alarmstufe 3 wird kein Schallgeber aktiviert, die Konfiguration kann jedoch so definiert werden, dass ein solcher Alarm Relais aktiviert.

Drücken Sie ACCEPT/RESET, um den akustischen Alarm auszuschalten. Die Alarmrelais können je nach Relaislogikkonfiguration zurückgesetzt werden.

Bei Feuerkanälen bewirkt das Drücken der ACCEPT/RESET Taste das Abschalten des Schleifenstroms, um die selbsthaltenden Feuer-/Rauchdetektoren zurückzusetzen.

Nach Drücken der ACCEPT/RESET Taste ertönt der interne Schallgeber während des Zurücksetzens des Feuerdetektors und der Stabilisierungszeit wesentlich leiser (siehe Abschnitt 4.2).

6.4 Fehlermeldungen

6.4.1 Kanalfehler

Vortex kann Fehler erkennen und anzeigen, die auf allgemeine Störungen in den Gas- und Feuerdetektoren zurückzuführen sind.

Am Anzeigemodul werden diese Fehler als Fehlercodes in der Anzeige dargestellt.

Code	Fehlerbeschreibung
Е	Dies wird angezeigt, wenn ein Fehler gerade behoben wird. Innerhalb weniger
	Sekunden wird diese Anzeige durch die normale Messwertanzeige ersetzt.
E001	Kanal-Zugriffsfehler. Es ist ein Problem in der Kommunikation zwischen dem
	Knotensteuermodul und dem Vierkanaleingangsmodul aufgetreten. Prüfen Sie,
	dass alle Vierkanaleingangsmodule mit der richtigen Adresse konfiguriert sind.
E002	Alle Eingänge deaktiviert. Aktivieren Sie die Eingänge wieder gemäß den
	Systemanforderungen, bevor Sie das System in Normalbetrieb übergehen
	lassen.
E006	Unterschreitungsfehler (Leitungsunterbrechung). Der Strom ist unter 1mA für
	Gasdetektoreingänge und unter den Wert für einen offenen Schaltkreis bei
	Feuereingängen gefallen. Prüfen Sie den Schaltkreis auf Unterbrechungen oder
	Kabelfehler, die ungewöhnliche Schleifenströme in der Detektorschaltung
	verursachen.
E007	Überschreitungsfehler (Kurzschluss). Der Strom liegt über 23,5mA für
	Gasdetektoreingänge und über dem für Kurzschluss programmierten Wert bei
	Feuereingängen. Prüfen Sie den Schaltkreis auf Kurzschluss oder Kabelfehler,
	die ungewöhnliche Schleifenströme in der Detektorschaltung verursachen.
E008	Nullfehler. Dieser Fehler tritt nur im Kanalprüfungsmodus auf (Abschnitt 7.4).
	Der Eingangswert ist zu weit von 4mA entfernt und kann somit nicht
	kompensiert werden. Der Eingang muss zwischen 3,5 und 4,5mA liegen.
	Messen Sie hierzu den Detektorausgang.
E009	Konzentrationsfehler. Dieser Fehler tritt nur im Kanalprüfungsmodus auf
	(Abschnitt 7.4). Der Eingangswert ist zu weit von dem erwarteten Wert
	entfernt, so dass die Konzentration nicht kompensiert werden kann. Messen Sie
	hierzu den Detektorausgang. Vergewissern Sie sich, dass der Detektor
	ordnungsgemäß kalibriert und der richtige Bereich konfiguriert wurde.

Tabelle 17: Liste der Kanalfehler

Betrieb

6.4.2 Stromversorgungsstatus

Auf dem Anzeigemodul befindet sich eine Stromversorgung OK LED. Diese LED gibt Auskunft über den Status der verschiedenen Stromversorgungssysteme.

Tabelle 18: Liste de	LED-Codes für	Stromversorgungsstatus
----------------------	---------------	------------------------

Code	Fehlerbeschreibung
Grun - Dauerleuchten	Netzstromversorgung 1st OK und
	Batterieladestatus ist OK.
Grün - Blinken	Netzstromversorgung ist OK aber
	Batterieladestatus ist niedrig.
Gelb - Dauerleuchten	Netzstromversorgung ist ausgefallen aber
	Batterieladestatus ist OK.
Gelb - schnelles Blinken	Batterieladestatus ist niedrig und
	Netzstromversorgung ist getrennt.
Gelb - langsames Blinken	Batterie ist entladen, getrennt, fehlerhaft oder
	zum Schutz vor Tiefenentladung getrennt.
	Kein Leuchten. Kompletter Stromausfall oder
	kein Zugriff auf das Stromüberwachungsmodul
	über den Bus.

6.4.3 Systemfehler

Es gibt verschiedene Systemfehler, die über die Systemfehler LEDs am Anzeigemodul angezeigt werden.

Die Fehler-LEDs am Knotensteuermodul zeigen über einen Binärcode an, welcher Systemfehler aufgetreten ist.

Tabelle 19: Liste der LED-Fehlercodes am Knotensteuermodul

• = leuchtet, \circ = leuchtet nicht

Code		Fehlerbeschreibung
0		Kein Fehler.
0		
0		
0	1	Batteriefehler.
0		Die Batterie ist vollständig entladen oder vom System
•		getrennt. Schließen Sie die Batterie wieder an oder tauschen
		Sie sie aus. Wenn keine Batterie angeschlossen ist, stellen
		Sie sicher, dass am Stromüberwachungsmodul der Jumper
		auf LK1 ist.
0	2	Fehler der Datenintegrität im FRAM, Störung des
•		Knotensteuermoduls. Wenden Sie sich an Crowcon.
0		
0	3	Interner Busfehler. Störung am Flachbandkabel zwischen
•		Anzeigemodul, Knotensteuerung und
•		Stromüberwachungsmodul. Prüfen Sie, ob das
		Flachbandkabel intakt und richtig gesteckt ist. Wenn der
		Fehler bestehen bleibt, wenden Sie sich an Crowcon.
•	4	Anzeigezugriffsfehler. Prüfen Sie die Verbindung zwischen
0		Knotensteuermodul und Anzeigemodul. Wenn der Fehler
0		bestehen bleibt, wenden Sie sich an Crowcon.
•	5	Zugriffsfehler bei Stromüberwachungseinheit. Prüfen Sie
0		die Verbindung zwischen Knotensteuermodul und
•		Stromüberwachungsmodul. Wenn der Fehler bestehen
		bleibt, wenden Sie sich an Crowcon.
•	6	Externer Busfehler. Vergewissern Sie sich, dass alle
•		Module richtig auf der Busschiene positioniert sind. Wenn
0		der Fehler bestehen bleibt, wenden Sie sich an Crowcon.

Code	Fehlerbeschreibung
• 7 •	Relaismodulfehler. Fehler an der Relaisspule oder Zugriffsfehler. Prüfen Sie, ob alle Adressschalter der Relaismodule korrekt sind. Wenn der Fehler bestehen bleibt, wenden Sie sich an Crowcon.

7 WARTUNG

7.1 Funktionsprüfung der Detektoren

Crowcon empfiehlt, die Detektoren routinemäßig zu überprüfen, um ordnungsgemäße Kalibrierung und korrekten Betrieb zu gewährleisten.

Bei Gasdetektoren müssen die Sensorköpfe mindestens alle 6 Monate neu kalibriert werden. Feuerdetektoren sind alle 3 bis 6 Monate zu überprüfen. Je nach Standortvorschriften können häufigere Prüfungen erforderlich sein.

Bezüglich detaillierter Anweisungen zu routinemäßiger Prüfung von Detektoren, beachten Sie bitte die Anweisungen zu Installation, Betrieb und Wartung für den jeweiligen Detektor.

7.2 Eingang sperren

Während Kalibrierungs- (Abschnitt 3.8 und 7.3) oder Kanalprüfungstätigkeiten (Abschnitt 7.4) ist es oft notwendig, die Eingänge zu sperren, um zu vermeiden, dass Relais ausgelöst werden.

Über das Anzeigemodul kann eine Zone (eine Gruppe von vier Kanälen an dem Vierkanaleingangsmodul) gesperrt werden, indem die entsprechende ZONE INHIBIT Taste auf der Rückseite des Anzeigemoduls gedrückt wird. Um die Zone in normalen Betriebsmodus zurückzusetzen, drücken Sie die ZONE INHIBIT Taste erneut.

Über die VortexPC Software können einzelne Kanäle gesperrt werden. Details siehe VortexPC Hilfe.

Während eine Zone oder ein Kanal gesperrt ist, wird ein Fehler oder Alarm, der auf einem dieser Kanäle auftritt, nicht an das entsprechende Relais weitergeleitet. Wenn eine Zone oder ein Kanal innerhalb dieser Zone gesperrt ist, leuchtet die entsprechende ZONE INHIBIT LED auf.

7.3 Rekalibrierung des Vortex

Normalerweise ist für Vortex keine Rekalibrierung erforderlich. Eine Kalibrierung wird jedoch nötig, wenn eine der Folgenden Situationen auftritt:

- ein Detektor wird ausgetauscht
- ein neuer Detektor wird hinzugefügt
- Austausch bestimmter Module, siehe Abschnitt 7.7.

In anderen Fällen können Sie eine Rekalibrierung als Sicherheitsprüfung durchführen.

Untenstehende Anweisungen beziehen sich auf das Anzeigemodul. Wenn Sie VortexPC verwenden, bietet Ihnen die Software Nullstellungs- und Kalibrierungsassistenten für eine leichte Durchführung der Kalibrierung.

Zur Kalibrierung von Vortex mit einem neuen Detektor, siehe Abschnitt 3.8. Zur Rekalibrierung oder nach Austausch eines vorhandenen Detektors gibt es eine einfachere Methode. Die Funktion PEAK HOLD CAL bietet eine Kalibrierungsmöglichkeit durch nur eine Person. Vortex verfügt über einen Speicher für jeden seiner 12 Eingangskanäle. In diesen Speichern werden die höchsten Werte für jeden Kanal gespeichert.

Vor der Kalibrierung ist eine Nulleinstellung durchzuführen.

Wartung

- 1. Bei einem neuen Detektor muss zuerst der Detektor kalibriert werden. Zum Kalibriervorgang beachten Sie bitte die Anweisungen zu Installation, Betrieb und Wartung für den jeweiligen Detektor.
- Sperren Sie den Kanal durch Drücken der entsprechenden ZONE INHIBIT taste auf der Rückseite des Anzeigemoduls. Die Kalibrierung kann auch ohne eine Sperrung des Kanals durchgeführt werden, jedoch besteht dabei die Gefahr, dass akustische und optische Warnsignale ausgelöst werden.
- 3. Stellen Sie sicher, dass der entsprechende Detektor den Nullwert misst (4mA bei einem Gasdetektor):
 - Bei einem Sauerstoffdetektor muss der Sensor vom Stromverstärker am Detektorkopf getrennt werden.
 - Andere Gasdetektoren sollten nicht in geschlossenen Räumen aufgestellt werden.
 - Bei einer Feuerdetektorschleife, trennen Sie die Stromverbindung der Feuerschleife am Vierkanaligen Eingangsmodul.
- 4. Wählen Sie mit den Tasten HOLD (Halten) und STEP (Weiter) den einzustellenden Kanal.
- 5. Sobald das Display den richtigen Kanal anzeigt, drücken Sie die Taste CHANNEL TEST (Kanalprüfung) auf dem Anzeigemodul. Das Display zeigt dann GL für Gasdetektor oder FL für Feuerdetektor zusammen mit dem Messwert an (dieser sollte nahe Null sein).
- 6. Drücken Sie dann die Taste ZERO (Null). Nun sollte das Display 0 anzeigen. Tritt ein E008 Fehler auf, deutet dies darauf hin, dass das eingehende Signal zu weit von nominalen Nullwert entfernt ist und somit nicht kompensiert werden kann. Überprüfen Sie, dass der Detektor ordnungsgemäß angeschlossen und die Schaltereinstellung des Vierkanaleingangsmoduls korrekt ist.
- 7. Nach erfolgreicher Nullstellung, schließen Sie den Sensor (nur bei Sauerstoffdetektoren) oder den Stecker (nur bei Feuerdetektoren) wieder an.
- 8. Drücken Sie die PEAK HOLD CAL Taste zum Löschen des Speichers. Vortex darf dabei nicht im Kanalprüfungsmodus sein.
- 9. Sauerstoffdetektoren müssen an freier Luft aufgestellt werden. Vergewissern Sie sich, dass am Display GL sowie der aktuelle Gasmesswert angezeigt wird. Warten Sie, bis sich dieser Messwert stabilisiert hat. Beaufschlagen Sie andere Gasdetektoren mit Kalibriergas (normal halbe Konzentration, aber mindestens 20% der vollen Konzentration). Warten Sie, bis sich der Detektor stabilisiert hat (normalerweise zwei Minuten). Vergewissern Sie sich, dass am Display GL sowie der aktuelle Gasmesswert angezeigt wird. Warten Sie, bis sich dieser Messwert stabilisiert hat. Bei einem Feuerdetektor integrieren Sie ein Amperemeter in den Schaltkreis des Kanals. Vergewissern Sie sich, dass am Display FL angezeigt wird und betätigen Sie einen Handfeuermelder. Wenn in dem Schaltkreis kein Handfeuermelder integriert ist, lösen Sie den Alarm am Detektor über eine Rauchpatrone aus.
- 10. Drücken Sie die Taste PEAK HOLD CAL.
- 11. Stellen Sie den angezeigten Messwert mithilfe der Tasten -HOLD und +STEP auf den korrekten Messwert ein.
 - Bei einem Sauerstoffdetektor in freier Luft kalibrieren Sie einen Messwert von 20,9% Vol.
 - Bei anderen Detektoren sollte der Kalibriertwert des beaufschlagten Kalibriergases verwendet werden.
 - Bei anderen 4-20mA Geräten sollte der Kalibrierwert der jeweils angewendeten Kondition verwendet werden.
 - Bei einem Feuerdetektor ist der Messwert des Amperemeters im Schaltkreis zu verwenden.
- 12. Drücken Sie ACCEPT/RESET. Das Display sollte die Konzentration des Kalibriergases (bei einem Gasdetektor) oder den Strom in mA (bei einem Feuerdetektor) anzeigen.

Tritt ein E009 Fehler auf, deutet dies darauf hin, dass der mA Ausgang vom Detektor zu stark vom erforderlichen Messwert abweicht und somit nicht kompensiert werden kann. Überprüfen Sie die Detektorkalibrierung.

13. Nun sind der Detektor und das Vierkanaleingangsmodul korrekt konfiguriert und kalibriert.

- Bei Gasdetektoren (nicht Sauerstoffdetektoren) können Sie nun das Kalibriergas entfernen.
- Bei einem Feuerdetektor können Sie das Amperemeter entfernen und die Feuerschleife wieder anschließen.
- 14. Drücken Sie die Taste RUN am Anzeigemodul um den Kanalprüfmodus zu verlassen.
- 15. Heben Sie sämtliche Sperrungen durch Drücken der Taste ZONE INHIBIT auf.
- 16. Bei Bedarf wählen Sie einen anderen Kanal und wiederholen Sie diesen Vorgang, bis die Kalibrierung für alle erforderlichen Kanäle abgeschlossen ist.

7.4 Kanalprüfungsmodus

Der Kanalprüfungsmodus wird verwendet, um die Alarmwerteinstellungen für einen Kanal über das Anzeigemodul anzusehen und zu verändern und um die Konfiguration der Relaisausgänge zu testen. Der Kanalprüfungsmodus wird auch zur Durchführung von Kalibrierung und Rekalibrierung verwendet (siehe Abschnitte 3.8 und 7.3).

7.4.1 Vorgehen zur Kanalprüfung

Der Kanalprüfungsmodus hat keinerlei Einfluss auf die Gaserkennungs- und Relaisfunktionen, ausgenommen für die des ausgewählten Kanals. Während des Kanalprüfungsmodus ist der interne Schallgeber nicht aktiv und gibt somit keine akustischen Alarme aus. Die Messwerte der Detektoren, die über die MODBUS Kommunikationsverbindung übermittelt werden, werden in diesem Modus beeinflusst. Wenden Sie sich hierzu an Crowcon.

Wenn Sie nur einfache Relaiskonfigurationen prüfen wollen, können Sie dies tun, ohne dafür die Zonen zu sperren.

Beachten Sie bitte, dass im Kanalprüfungsmodus ein auftretender Fehler nicht zum Auslösen der Relais führt.

Zur Ansicht der Kanaleinstellungen:

- 1. Wählen Sie den gewünschten Kanal über die HOLD und STEP Tasten.
- 2. Drücken Sie die ZONE INHIBIT Taste für jeden Kanal, den Sie prüfen möchten, um ein Auslösen der Relais zu verhindern, es sei denn Sie möchten die Relaisausgangskonfiguration prüfen.
- Drücken Sie die Channel Test Taste auf der Rückseite des Anzeigemoduls. Ist ein Kanal ein Gasdetektor (oder ein anderes 4-20mA Eingangsgerät), zeigt die Kanalanzeige den Code GL (für Gas Level) und die Channel Test LED blinkt. Der Gasmesswert wird im Anzeigenfeld dargestellt.

Ist ein Kanal ein Feuerdetektor, zeigt die Kanalanzeige den Code FL (für Fire Level) und die Channel Test LED blinkt. Der Schleifenstrom wird im Anzeigenfeld in Milliampere dargestellt.

Die Messwerte werden mit Herabsetzung auf Nullpunkt angezeigt.

Wartung

4. Drücken Sie die Channel Test Taste mehrere Male, um die jeweiligen Werte in der Reihenfolge, wie in Tabelle 20 dargestellt, anzeigen zu lassen. Wenn ein Kanal nicht gesperrt ist, werden die jeweiligen Relais ausgelöst, wenn die Sequenz dort eingeht. Dies kann auch dafür genutzt werden, um zu prüfen, dass die Relais und ihre Elemente korrekt arbeiten.

Beachten Sie bitte, dass die verschiedenen Alarme unabhängig voneinander aktiviert werden, entsprechend ihren Schwellenwerten und ob sie als ansteigender oder abfallender Alarm definiert sind. Somit kann es vorkommen, dass mehrere Alarme gleichzeitig anliegen.

Gasdetektorkanal		
Kanalanzeige	Status	Anzeigenfeld
GL	Startpunkt. Alarmstatus gemäß	Gaswert
	Eingangssignalwert.	
A1	Alarmstufe 1 aktiv	Alarmstufe 1
A2	Alarmstufe 2 aktiv	Alarmstufe 2
A3	Alarmstufe 3 aktiv	Alarmstufe 3
FS	Alle ansteigenden Alarme aktiv	Full Scale (volle Konzentration)
A3	Alarmstufe 1 aktiv	Alarmstufe 3
A2	Alarmstufe 2 aktiv	Alarmstufe 2
A1	Alarmstufe 3 aktiv	Alarmstufe 1
0	Alle abfallenden Alarme aktiv	Null
F (Fault = Fehler)	Fehler LED leuchtet dauerhaft. Es wird ein	E (möglicherweise mit einer
	Nullwert erzwungen, so dass abfallende	Fehlernummer)
	Alarme aktiv sind. Hierbei wird das	
	Fehlerrelais nicht ausgelöst.	
GL	Zurück zum Startpunkt	Gaswert

Tabelle 20: Anzeigensequenzen während der Kanalprüfung

Feuerdetektor	kanal	
Kanalanzeige	Status	Anzeigenfeld
FL	Startpunkt. Alarmstatus gemäß	Feuerwert
	Eingangssignalwert.	
OC	Keine Alarme aktiv. Fehler aktiv	Open Circuit (Unterbrechung
		im Kreislauf)
AL	Alarmstufen 1,2 und 3 aktiv. Kein Fehler aktiv.	Alarmstufe
SC	Alarmstufen 1,2 und 3 aktiv und Fehler aktiv.	Short Circuit (Kurzschluss)
FS	Alarmstufen 1,2 und 3 aktiv und Fehler aktiv.	Full Scale (volle Konzentration)
0	Keine Alarme aktiv. Fehler aktiv.	Null
FL	Zurück zum Startpunkt	Feuerwert

- 5. Sie können die Kanalprüfung jederzeit beenden, indem Sie die RUN Taste drücken.
- 6. Heben Sie sämtliche Sperrungen durch Drücken der entsprechenden ZONE INHIBIT Tasten auf.

7.4.2 Einstellung der Alarmstufen

Zum Ändern einer Alarmstufe:

- 1. Drücken Sie die entsprechende ZONE INHIBIT Taste für jeden Kanal, den Sie prüfen möchten.
- 2. Wählen Sie den gewünschten Kanal über die HOLD und STEP Tasten.
- 3. Lassen Sie sich über die Channel Test Taste die jeweilige Stufe (A1, A2 oder A3) anzeigen. (Siehe Abschnitt 7.4.1).
- 4. Drücken Sie die + Taste (STEP) um den Wert zu erhöhen oder die Taste (HOLD) um den Wert zu verringern. Wiederholen Sie dies, bis der gewünschte Wert angezeigt wird.
- 5. Um den neuen Wert im Vortex Memory zu speichern, drücken Sie ACCEPT/RESET. Der interne Schallgeber ertönt. Wenn Sie den Wert nicht speichern, geht er beim nächsten Drücken der Channel Test Taste verloren.
- 6. Um in den normalen Betriebsmodus zurückzukehren, drücken Sie die Taste RUN auf der Vorderseite der Schalttafel.
- 7. Heben Sie sämtliche Sperrungen durch Drücken der entsprechenden ZONE INHIBIT Tasten auf.

HINWEIS: Für Feuerdetektoren wird eine ähnliche Methode zum Einstellen der Werte für Kurzschluss, Alarm und Unterbrechung verwendet, wenn das Display SC, AL bzw. OC anzeigt.

7.5 Lampenprüfung

Über die Lampenprüfung werden alle LEDs und der Schallgeber auf ordnungsgemäße Funktion geprüft. Außerdem wird die Sicherheits-LED und die Fehler-LED am Knotensteuermodul geprüft. Diese Prüfung kann jederzeit, außer im Kanalprüfmodus ausgeführt werden. Sie hat keinen Einfluss auf die Gas- und Feuererkennung.

Zur Durchführung der Prüfung wählen Sie eine der folgenden Methoden:

- Drücken Sie die Taste LAMP TEST auf der Rückseite des Anzeigemoduls.
- Betätigen Sie den Lampenprüfungsschalter an dem Knotensteuermodul.
- Klemmen Sie Klemme 10 und 11 am Knotensteuermodul an.

Zur Durchführung der Prüfung muss die Taste bzw. der Schalter gedrückt gehalten werden.

Wartung

7.6 Ereignisprotokollierung

Das Knotensteuermodul speichert Ereignisse (maximal 300), auf die über die digitalen Kommunikationsverbindungen zugegriffen werden kann. Jedes Ereignis wird zusammen mit einer Zeitmarkierung gespeichert. In Tabelle 21 sind die im Ereignisprotokoll gespeicherten Daten aufgelistet.

Tabelle 21:	Daten, die	im Ereign	isprotokoll	aufgezeichnet	werden
rabene 21.	Duttin, uit	ini Li cign	ispi otokon	auischenen	weruen

Ereignis	Aufgezeichnete Daten
Auftreten und Aufhebung von	Jede Kanal-ID und die Alarmstufe
Alarmzuständen	
Feuerdetektor wird wieder aktiviert	Kanal-ID
nach Zurücksetzen und	
Stabilisierungszeit	
Drücken von Accept/Reset	
Aktivitäten zur Kanalprüfung	Durchgeführte Aktivitäten mit Kanal-ID.
Löschen der Peak Hold Cal Speicher	
Sperrungen	Kanal-ID sowie Sperrung oder Entsperrung
Fehler (jeder Fehler wird als	Unterschreitung, Überschreitung, Kanalkommunikation
aufgetretener Fehler und behobener	zusammen mit entsprechender Kanal-ID. Keine Fehler für
Fehler gespeichert)	Detektorfreigabe.
Systemfehler (jeder Fehler wird als	Batteriefehler, FRAM Daten, Flachbandkabelbus,
aufgetretener Fehler und behobener	Displayzugriff, Stromüberwachungsmodul, Modulzugriff,
Fehler gespeichert)	Bus-PCB, Relaisausgangsmodul.
Relaisansteuerung	Relais-ID und ob das Relais angesteuert oder nicht
	angesteuert ist. Dies ist das Ergebnis, das von der
	Relaislogik bewertet wird, stellt aber nicht
	notwendigerweise einen Relaiskontaktstatus dar, da diese
	von der Relaiskonfiguration abhängen.
Kommunikationsaktivitäten	Konfig-Kabel gesteckt, Konfig-Kabel entfernt.
	Nulleinstellung und Kalibrierung über serielle
	Kommunikation mit zugehöriger Kanal-ID durchgeführt.
FRAM Aktualisierung	Intern gespeicherte Konfiguration
	Stromversorgungsereignis, Anderung der
	Stromversorgung' aufgetreten und Umschaltung zu
	OK/Netzausfall,
	Batterie niedrig/Netz OK,
~ · · ·	Batterie nicht verbunden/Netz OK, Batterie niedrig
Serviceereignis	Datum und Zeit der Löschung des Ereignisprotokolls.

7.7 Austausch von Modulen

Vortex ist ein modulares System und Module können nach Bedarf ausgetauscht werden. Die Leiterplatten in den Modulen benötigen keine Wartung. Wenn sie Ersatzmodule einbauen, stellen Sie sicher, dass mögliche Konfigurationsschalter korrekt gesetzt sind, bevor Sie das Modul in das System einbauen (siehe Kapitel 4). Wenn die Addresschalter des Moduls nicht korrekt gesetzt sind, kann Fehler E001 auftreten.

Liste der erhältlichen Ersatzteile siehe Anhang C.

Module können über die Hot-Swap Steuerung des Knotensteuermoduls ausgetauscht werden, ohne dass ein Fehler ausgelöst wird.

- Zur Verwendung der Hot-Swap Option verbinden Sie die Knotensteuerklemme 9 mit Klemme 12, während das Gerät im Betriebsmodus ist (nicht auf einen Kanal festgefroren). Siehe Abbildung 17 in Anhang B. Während der Hot-Swap Phase ertönt der Schallgeber wiederholt und im Anzeigenfeld erscheint das Wort "Stop". Das System beendet die Überwachung, aber die Relais verändern sich nicht.
- 2. Tauschen Sie die gewünschten Module aus. Anweisungen zu Montage und Demontage der Module, siehe Abschnitt 7.8.
- 3. Trennen Sie die Hot-Swap Verbindung. Der vorherige Status des Vortex Systems wird wieder hergestellt und der Schallgeber verstummt.

Durch den Austausch bestimmter Module kann eine Rekalibrierung erforderlich werden, siehe unten.

Austausch von:	Kalibrierung erforderlich
Knotensteuermodul	Alle Kanäle
Vierkanaleingangsmodul	Kanäle, die an der ausgetauschten Karte gesteckt
	waren.

7.8 Montage und Demontage von Modulen auf der DIN Schiene

Module werden in die Anschlüsse auf der DIN Schiene gesteckt und werden mithilfe von Kunststoffklammern in ihrer Position fixiert. Siehe Abbildung 14.

- 1. Zur Montage eines Moduls positionieren Sie die obere und unter schwarze Klammer möglichst nahe an dem Stecker auf der Rückseite des Moduls. Drücken Sie auf das Modul, so dass der Stecker in der Anschlussbuchse auf der DIN Schiene einrastet. Drücken Sie dann wieder fest auf das Modul, bis die Klammern auf der DIN Schiene einrasten.
- 2. Zur Demontage eines Moduls heben Sie die obere Klammer mit einem Schraubendreher nach oben und die untere Klammer nach unten ab, wie in Abbildung 14 dargestellt. Ziehen Sie das Modul von der DIN Schiene ab.

Abbildung 14: Modul auf DIN Schiene und Vorgehen zur Demontage

CLIPS	KLAMMERN

7.9 Austausch der Batterien

Zum Austausch der Batterien an einem Vortex DIN, Vortex Rack oder Vortex Panel Gerät, trennen Sie lediglich die alten Batterien vom Stromüberwachungsmodul und stecken Sie die neuen Batterien an. Hierzu ist es nicht erforderlich, die Stromversorgung zu trennen.

Zum Austausch der Batterien an einem Vortex in einem Standardgehäuse, befolgen Sie untenstehende Anweisungen. Die Notstrombatterien können ausgetauscht werden, ohne dass die Stromversorgung ausgeschaltet werden müsste.

- 1. Lösen Sie die Verbindung der Batterie an der Buchse oben rechts am Stromüberwachungsmodul (siehe Abbildung 11, Seite 35).
- 2. Lösen Sie die beiden großen Schrauben in der Mitte des Stromüberwachungsmoduls und ziehen Sie das Modul vorsichtig heraus, ohne eines der anderen Kabel zu lösen (siehe Abbildung 15).
- 3. Lösen Sie die drei Schrauben der Metallhalterung auf der Vorderseite des Batteriefachs. Entnehmen Sie die Halterung.
- 4. Tauschen Sie die Batterien aus. Schieben Sie die Sicherung in den Bereich rechts neben den Batterien und vergewissern Sie sich, dass die Anschlussdrähte zum Stromüberwachungsmodul oben herausragen.
- 5. Schrauben Sie die Halterung und das Stromüberwachungsmodul wieder fest.
- 6. Schließen Sie die Batterien an dem Stromüberwachungsmodul an.

Abbildung 15: Ausbau der Batterien aus dem Vortex Standardgehäuse

POWER MONITORING MODULE	STROMÜBERWACHUNGSMODUL
CONNECTOR TO POWER MONITORING MODULE	ANSCHLUSS ZUM STROMÜBERWACHUNGSMODUL
BRACKET	HALTERUNG
FUSE	SICHERUNG
BATTERY PAIR	BATTERIEPAAR
VORTEX ENCLOSURE	VORTEX GEHÄUSE

Hinweis: Für eine bessere Übersicht wurden die Kabel in der Abbildung nicht berücksichtigt. Dieser Schritt kann durchgeführt werden, ohne dass das Stromüberwachungsmodul vom System getrennt werden muss, wie bereits im Fließtext erläutert.

Anhang A

ANHANG A:

GLOSSAR

In diesem Handbuch werden folgende Begriffe, Kurzwörter und Abkürzungen verwendet.

%UEG	Prozentwert der Unteren Explosionsgrenze: Eine Möglichkeit die Konzentration
	von brennbaren Gasen auszudrücken.
%VOL	Volumenprozent: Die Konzentration eines Gases ausgedrückt als Prozentwert
	des Gesamtvolumens einer Gasmischung. Auch als v/v abgekürzt.
Cal	Verfahren zur Bestimmung von Detektoren
DCS	Distributed Control System (verteiltes Steuersystem)
EMV	Elektromagnetische Verträglichkeit
FRAM	Ferroelektrischer, nichtflüchtiger RAM Speicher. Dieser nichtflüchtige Speicher
	wird im Vortex Knotensteuermodul verwendet.
Inhibit (Sperren)	Unterbrechung der Verbindung zwischen einem Kanal und den zugehörigen
	Ausgängen.
	Wird zur Verhinderung von Alarmen während der Prüfung oder Kalibrierung
	eines Detektors verwendet.
IS	Intrinsically safe (eigensicher): Dieser Begriff wird verwendet, um ein Gerät
	oder einen Schaltkreis zu beschreiben, der so ausgelegt ist, dass keinerlei
	Funken oder thermische Einflüsse entstehen, die eine brennbare Atmosphäre
	entzünden könnten.
LED	Light Emitting Diode (Leuchtdiode)
Modbus	Protokoll das für RS485 und RS232 Verbindungen genutzt wird
PC	Personal Computer
PCB	Printed Circuit Board (Leiterplatte)
SPS	Speicherprogrammierbare Steuerung
Ppm	Parts per million (Teile pro Million): Ein Maß für Gaskonzentration, wenn die
	Konzentration sehr gering ist.
Relaislogik	Die Gesamtheit der Verbindungen zwischen Detektoren und Relais, gesteuert
	von dem Knotensteuermodul.
RS232	Standard für serielle Hardwarekommunikation zwischen PCs und Vortex. Das
	Vortex System arbeitet über diese Verbindung mit dem Modbus Protokoll.
RS485	Standard für serielle Master-Slave-Kommunikation zwischen SPS oder DCS
	und Vortex. Das Vortex System arbeitet über diese Verbindung mit dem
	Modbus Protokoll. Hierbei handelt es sich um einen Mehrpunktstandard, d.h. es
	können über ein einzelnes Mastersystem mehrere Vortex Systeme gesteuert
	werden.

Sink (Detektorkonfiguration)	Eine Seite des Sink-Detektors ist direkt mit der
	Erde verbunden. Der entsprechende Kanal muss
	für den verwendeten Detektor konfiguriert
	werden. Zur Information, ob ein Detektor ein
	Sink-, Source- oder Dual-Gerät ist, siehe
	Detektor-Datenblatt.
Source (Detektorkonfiguration)	Eine Seite des Source-Detektors ist direkt mit
	Stromversorgung verbunden. Der entsprechende
	Kanal muss für den verwendeten Detektor
	konfiguriert werden. Zur Information, ob ein
	Detektor ein Sink-, Source- oder Dual-Gerät ist,
	siehe Detektor-Datenblatt.
SPCO	Single Pole Changeover (Einpoliges
	Umschaltrelais); eine Art Relais.
SWA	Steel wire armoured (stahldrahtbewehrt), eine
	Kabelart, die zum Schutz eine
	Stahldrahtbewehrung hat.
Nullen	Verfahren zum Ausgleich von Eingangswerten
	zur Kompensation von Detektoren, die nicht
	exakt 4mA-Signale liefern.
Herabsetzung auf Nullpunkt	Eine Option für Gasdetektoren. Wenn diese
	Option ausgewählt wird (Voreinstellung), werden
	Messwerte von unter 3% der vollen
	Konzentration auf null herabgesetzt. Siehe
	Abschnitt 4.4.2.
Zone 1, 2, 3	Betrifft das Vortex System und bezieht sich hier
	auf die vier Detektorkanäle in einem
	Vierkanaleingangsmodul. Darf nicht mit den
	Normbegriffen zur Einstufung von gefährdeten
	Bereichen verwechselt werden.

ANHANG B:

ELEKTRISCHE VERBINDUNGEN

Display Module	Anzeigemodul	
Earth	Erde	
+ sig and 0V	+ Sig und 0V	
Ribbon cable bus	Flachbandkabelbus	
Mains input	Netzeingang	
Ε	E	
LN	LTG	
Dc input	DC Eingang	
From detectors	Von den Detektoren	
To output field devices	Zu den Ausgangsfeldgeräten	
RS485	RS485	
Node controller module	Knotensteuermodul	
Quad channel input module	Vierkanaleingangsmodul	
Relay output module	Relaisausgangsmodul	
Power supply	Stromversorgung	
Power monitoring module	Stromüberwachungseinheit	
Backup batteries	Notstrombatterien	
RS232 (temporary link only)	RS232 (nur temporäre	
	Verbindung)	
Config	Konfiguration	
TP1	TP1	
TP2	TP2	
Remote Accept/Reset	Fernsteuerung Accept/Reset	
Lamptest	Lampenprüfung	
Bus rail	Busschiene	
Earth	Erde	
DC power to output field	DC Strom zu	
devices via relays	Ausgangsfeldgeräten über	
	Relais	
Power monitor relays	Stromüberwachungsrelais	
*Asterisk indicates earth	* Der Stern kennzeichnet den	
connection as necessary. See	Erdungsanschluss, je nach	
instructions and Appendix F	Bedarf. Weitere Details siehe	
for further details	Anweisungen und Anhang F.	

Abbildung 16: Verbindungsschema für das Vortex System

Vortex Handbuch

LAMP TEST	LAMP TEST
ACCEPT/RESET	ACCEPT/RESET
HOT SWAP	HOT SWAP
OK	ОК
Fault	Fehler
TXD	TXD
RXD	RXD
Config	Konfiguration
Accept/Reset	Accept/Reset
System Lamp Test	System Lamp Test
Node Control Module	Knotensteuermodul

Abbildung 18: Schaltplan für das Vierkanaleingangsmodul

OR	ODER
CHASSIS EARTH	CHASSIS ERDE
SIG	SIG
Quad Channel Module	Vierkanaleingangsmodul
SERIES 60 FIRE DETECTOR	FEUERDETEKTOR BAUREIHE 60
SWITCH POSITION 4	SCHALTPOSITION 4
3 WIRE DETECTOR	3 LEITER DETEKTOR
SOURCE-SWITCH POSITION 1	SOURCE- SCHALTPOSITION 1
SINK-SWITCH POSITION 2	SINK - SCHALTPOSITION 2
2 WIRE LOOP POWER	2 LEITER SCHLEIFENSTROM
SWITCH POSITION 2	SCHALTPOSITION 2

Abbildung 19: Schaltplan für das Relaisausgangsmodul

OR	ODER
NO	NO
COM	COM
NC	NC
Relays	Relais
Fault	Fehler
Relay Lamp Test	Relay Lamp Test
Relay Module	Relaismodul

ANHANG C:

ERSATZTEILLISTE

Beschreibung	Artikelnummer
Knotensteuermodul	S01937
Vierkanaleingangsmodul	S01935
Relaisausgangsmodul	S01939
Vortex Anzeigemodul	S01913
Rack Anzeigemodul	S011030
Panel Anzeigemodul	S011029
Panel Klebeschild	M05746
Stromüberwachungseinheit	S01941
Karte mit Anweisungen	M07212
M20 Kunststoffstopfen für Durchführung	M04561
Schlüssel	M02315
RS232 Kommunikationskabel	E07533
Vortex vorkonfektioniertes Flachbandkabel	E07524
Vortex Rack/Panel/DIN Flachbandkabel	E07554
3-Leiter Stecker	E07101
2-Leiter Stecker	E07100
VortexPC Software	C01758
DIN-Schienen-Montagesatz für	C01794
Stromüberwachungsmodul	
Vortex Bus Ersatzteil	C01768
Vortex Bus Erweiterungssatz	C01800

ANHANG D: PRODUKTPALETTE DER CROWCON DETEKTOREN

Untenstehende Liste enthält einige der derzeit produzierten Crowcon Detektoren mit einigen detaillierten Informationen zur Verwendung mit Vortex. Dies ist nicht eine endgültige Liste, da immer wieder neue Produkte zu der Produktpalette hinzukommen. Aktuellste Informationen finden Sie auf der Webseite von Crowcon unter www.crowcon.com

Produktname	Detektorart	Typischer Bereich / Gas
Xgard Type 1	Elektrochemisch.	Verschiedene Bereiche.
	2-Leiter 4-20mA Sinkdetektor,	
	schleifengespeist, lokaler Verstärker. Ausgang	Die meisten toxischen Gase und
	proportional zur Gaskonzentration am	Sauerstoff.
	Detektor.	
	Eigensicher.	
Xgard Type 2	Elektrochemisch.	Verschiedene Bereiche.
	2-Leiter 4-20mA Source- oder Sinkdetektor,	Sauerstoff, Kohlenmonoxid,
	schleifengespeist, mit lokalem Verstärker.	Wasserstoff und
	Ausgang proportional zur Gaskonzentration	Schwefelwasserstoff.
	am Detektor.	
	Sinkgerät.	
	Feuerfest.	
Xgard Type 3	Pellistor/Wärmetönungssensor.	0-100% UEG
	3-Leiter mV Brückenausgang. Muss über	
	einen Wandler an Vortex angeschlossen	Die meisten brennbaren Gase.
	werden. Ausgang proportional zur	
	Gaskonzentration am Detektor.	
	Feuerfest.	
Xgard Type 4	Pellistor/Wärmetönungssensor.	0-100% UEG.
	Hochtemperaturvariante: Betrieb bis zu	Methan.
	150°C.	
	3-Leiter mV Brückenausgang. Muss über	
	einen Wandler an Vortex angeschlossen	
	werden. Ausgang proportional zur	
	Gaskonzentration am Detektor.	
	Feuerfest.	
Xgard Type 5	Pellistor/Wärmetönungssensor.	0-100% UEG,
	3-Leiter 4-20mA Source- oder Sinkausgang,	Die meisten brennbaren Gase.
	mit lokalem Verstärker. Ausgang proportional	
	zur Gaskonzentration am Detektor.	
	Feuerfest.	
Xgard Type 6	Thermische Leitfähigkeit.	0-100% vv.
	3-Leiter 4-20mA Source- oder Sinkausgang,	Nur für binäre Gase geeignet.
	mit lokalem Verstärker. Ausgang proportional	
	zur Gaskonzentration am Detektor.	
	Feuerfest.	

Produktname	Detektorart	Typischer Bereich / Gas
TXgard-IS+	Elektrochemisch.	Verschiedene Bereiche.
	2-Leiter 4-20mA Sinkdetektor,	Die meisten toxischen Gase und
	schleifengespeist, lokaler Verstärker mit	Sauerstoff.
	Display. Ausgang proportional zur	
	Gaskonzentration am Detektor.	
	Eigensicher.	
TXgard Plus	Elektrochemisch.	Verschiedene Bereiche. Nur
	3-Leiter 4-20mA Source- oder Sinkausgang, mit	Sauerstoff, Kohlenmonoxid und
	lokalem Verstärker und Display. Ausgang	Schwefelwasserstoff.
	proportional zur Gaskonzentration am Detektor.	
	Feuerfest.	
Flamgard Plus	Pellistor/Wärmetönungssensor.	0-100% UEG.
	3-Leiter 4-20mA Source- oder Sinkausgang, mit	Die meisten brennbaren Gase.
	lokalem Verstärker und Display. Ausgang	
	proportional zur Gaskonzentration am Detektor.	
	Feuerfest.	
IRmax	Infrarot.	0-100% UEG.
	3-Leiter 4-20mA Source- und Sinkausgang, mit	Viele Kohlenwasserstoffe und
	lokalem Verstärker. Ausgang proportional zur	Dämpfe.
	Gaskonzentration am Detektor.	
	Feuerfest.	
Xgard IR	Infrarot.	0-100% UEG.
	3-Leiter 4-20mA Source- und Sinkausgang, mit	Methan, Butan, Propan,
	lokalem Verstärker. Ausgang proportional zur	Ethylen, Ethanol, Pentan,
	Gaskonzentration am Detektor.	Hexan, LPG (Flüssiggas) 0-2
	Feuerfest.	oder 0-5% CO_2 .
TCgard	Thermische Leitfähigkeit.	0-100% vv.
	3-Leiter 4-20mA Source- oder Sinkausgang, mit	Nur für binäre Gase geeignet.
	lokalem Verstärker. Ausgang proportional zur	
	Gaskonzentration am Detektor.	
	Feuerfest.	

Mit jedem Detektor werden detaillierte Anweisungen zu Installation, Betrieb und Wartung mitgeliefert. Diese Anweisungen sind vor dem Anschluss eines Detektors an Vortex und vor Einschalten der Stromversorgung zu beachten.

Auch Detektoren, die nicht in dieser Liste aufgenommen wurden können zusammen mit Vortex verwendet werden. Wenn Sie weitere Details benötigen, wenden Sie sich bitte an Crowcon.

ANHANG E:

VORTEX KONFIGURATION

Folgende Liste enthält alle konfigurierbaren Optionen des Vortex Systems. Diese können über VortexPC konfiguriert werden.

Option / Eigenschaft	Zulässige Werte und Erläuterungen
Systembezeichnung	16-stellige Zeichenfolge zur Benennung des Systems
Freischalten	Umspringen auf
Alarm	Ein/Aus. Wenn diese Option gesetzt ist, wird der erste Kanal, der einen
	Alarm auslöst, dauerhaft am Display angezeigt. Die Hold LED blinkt. Das
	Display wird in dieser Anzeige gehalten bis die RUN Taste gedrückt wird,
	auch wenn andere Kanäle ebenfalls in Alarm gehen.
Sperrung der	J/N. Wenn J, sind die CAL, ZERO, PEAK HOLD CAL, CHANNEL TEST
Gerättasten	Tasten gesperrt
Sperrung des internen	J/N. Wenn J, ist der interne Schallgeber gesperrt. Modbusadresse:
Schallgebers	Modbusadresse des Vortex im System. Normalerweise 1, es sei denn es
	handelt sich um ein Mehrpunktsystem.
Anzahl der	1, 2 oder 3
Vierkanaligen	
Eingangsmodule	
Anzahl der	0, 1, 2, 3 oder 4
Relaisausgangsmodule	
Kanäle	
Bezeichnung	8-stellige Zeichenfolge zur Bezeichnung des Kanals.
Freigegeben	Ein/Aus. Ein Detektor muss freigegeben und konfiguriert sein, um im
	System zugelassen zu sein. Wenn keine teilnehmenden Detektoren
	vorhanden sind, wird Fehler E002 ausgegeben.
Art	Gas
	Feuer (nur Kanal 1 des Moduls)
	Nichtkonfiguriert, wenn dem Kanal kein Detektor zugewiesen wurde
Gasdetektoren	
Einheiten	Wählen Sie die Einheiten für die Gasdetektoren: %UEG, %VOL oder ppm.

Option /	Zulässige Werte und Erläuterungen
Eigenschaft	
Bereich	Für %UEG und %VOL kann der Bereich von 0 bis 1, 2, 2,5, 5, 10, 20, 25, 50
	oder 100 festgelegt werden.
	Für ppm kann der Bereich von 0 bis 1, 2, 2,5, 5, 10, 20, 25, 50, 100, 200, 250,
	500, 1000, 2000, 2500, 5000, 10000 festgelegt werden. Bei dem 10000 Bereich
	geht die maximale Anzeige bis 9990.
Werte außerhalb	Interpret High und Interpret Low. Jede Option kann auf Info, Inhibit (Sperren)
des Bereichs	oder Fault (Fehler) eingestellt werden.
	Details, siehe Abschnitt 4.4.2.
Alarmstufen 1, 2	Die Alarmschwellen müssen innerhalb des Bereichs eines jeden Detektors
und 3	anhand der festgelegten Einheit gesetzt werden. Die Alarmstufen sind entweder
	als Aufsteigend oder Absteigend definiert.
Herabsetzung auf	Ein/Aus. Die Voreinstellung ist Ein. Wenn diese Option ausgewählt wird,
Nullpunkt	werden Messwerte von unter 3% der vollen Konzentration auf null
	herabgesetzt.
	Details, siehe Abschnitt 4.4.2.
Feuerdetektoren	
Stromschwelle	Die Stromschwellen müssen innerhalb eines Bereichs von 0 bis 60mA in der
	Reihenfolge Unterbrechung < Feuer < Kurzschluss eingestellt werden. Zeit bis
	zum Zurücksetzen zwischen 0 und 255 Sekunden. Dies ist die Zeit, während
	derer der Schleifenstrom zum Zurücksetzen eines Feuerdetektors in
	Alarmzustand nach Drücken der ACCEPT/RESET Taste abgeschaltet ist.
	Stabilisierungszeit zwischen 0 und 255 Sekunden. Dies ist die Zeit, während
	derer sich ein Feuerdetektor nach einem Reset stabilisieren kann, bevor er
	wieder voll funktionsfähig ist.
Relais	
Bezeichnung	8-stellige Zeichenfolge zur Bezeichnung des Relais
Freigegeben	Ein/Aus. Ein Relais muss freigegeben und konfiguriert sein, um im System
	zugelassen zu sein
Art	Kann auf Nicht konfiguriert, Nicht-selbsthaltend, Nicht-selbsthalten zulässig,
	Selbsthaltend, Selbsthalten zulässig, Impulsgesteuert, oder Reset-Impuls
	eingestellt werden. Nicht verwendete Relais müssen 'Nicht konfiguriert' gesetzt
	werden. Erklärungen hierzu finden Sie in Abschnitt 4.5.2.
Verzögerungszeit	Die Verzögerungszeit, bevor das Relais aktiviert wird. Wenn vorhanden, von 0
EINschalten	bis 65535 Sekunden.
Verzögerungszeit	Die Verzögerungszeit, bevor ein Relais ausgeschaltet wird, ausgenommen bei
AUSschalten	Impulsgesteuert und Reset-Impuls. Hier bezeichnet es die Zeit, bevor das Relais
	aktiviert wird. Wenn vorhanden, von 0 bis 65535 Sekunden.

Option / Eigenschaft	Zulässige Werte und Erläuterungen
Einschaltzustand	Entweder ,Normal eingeschaltet' oder ,Normal ausgeschaltet' Siehe
	Abschnitt 4.5.2.
Relaislogik	
Detektorverbindungen	Hierdurch können Detektoralarme und Ereignisse auf der Relaislogik
	abgebildet werden, siehe Abschnitt 4.5.3
Systemverbindungen	Hierdurch können Systemfehler und Systemschallgeber auf der Relaislogik
	abgebildet werden, siehe Abschnitt 4.5.3
Anzahl der	Die Anzahl wird auf einen Wert zwischen 1 und der Anzahl der Eingänge am
Schaltungen	Relais festgelegt und bezeichnet die Anzahl der Eingänge, die benötigt
	werden, um ein Relais auszulösen. Siehe Abschnitt 4.5.3.

ANHANG F:

ERDUNG

Einführung

Der Nachstehende Entscheidungsbaum sowie die entsprechenden Diagramme können zur Festlegung der benötigten Erdung für Ihr System herangezogen werden.

Definitionen

Schutzerde,	Anschluss der Erdungsleiste an die Zenerbarriere. Sie sollte über ein eigenes	
eigensicher	Kabel an die zentrale Erde angeschlossen werden.	
Isolierte	Stromversorgung bei der der Nullleiter keine Verbindung zur Erde hat.	
Stromversorgung		
	Die interne Stromversorgung im Vortex ist isoliert. Galvanischer Isolator.	
	Alternative zu einer Zenerbarriere, für die keine eigensichere Erdung erforderlich ist.	
	Beispiele für galvanische Isolatoren sind:	
	MTL 5041 Stromversorgungsverstärker 4/20mA für 2-Leiter Geber, die in	
	2-Leiter 4/20mA Gasdetektoren verwendet werden	
	MTL 5061 Feuer-/Rauch-Detektorschnittstelle, zweikanalig,	
	schleifengespeist, wird für Feuerschleifen verwendet.	
Zenerbarriere	Ein Gerät, das eine sichere Schnittstelle zwischen einem sicheren und einem	
	gefährdeten Bereich herstellt. Das Gerät fungiert als Spannungs- und	
	Strombegrenzer für gefährdete Bereiche, um zu verhindern, dass keinerlei	
	Funken oder Wärme, die im sicheren Bereich durch eine elektrische Störung	
	verursacht wurden, im gefährdeten Bereich eine Brandgefahr auslösen	
	können. Für Zenerbarrieren ist eine eigensichere Schutzerdung erforderlich.	
	Ein Beispiel für eine Zenerbarriere ist die MTL 728 Schutzbarriere mit	
	Bypassdiode	

Fragen

Diese Fragen werden in Abbildung 20 wieder aufgegriffen. Auch die möglichen Antworten sind dargestellt. Beantworten Sie die Fragen und folgen Sie dem Entscheidungsbaum bis zu dem Diagramm, das Sie als Richtlinie für Ihre Anschluss- und Erdungsanforderungen verwenden sollten.

Frage Nr.	Frage	Mögliche
		Antworten
1	Für wie viele Sensoren ist die Verwendung einer	KEINE
	Zenerbarriere bzw. eines galvanischen Isolators	EINIGE
	erforderlich?	ALLE
2	Verwendet das System die Vortex-interne Netz-an-DC	JA
	Stromversorgung?	NEIN
3	Ist die externe Netzleitung zur DC Stromversorgung	JA
	isoliert?	NEIN
4	Erfolgt die Schnittstelle zum sicheren Bereich über eine	JA
	Zenerbarriere?	NEIN

Abbildung 20: Entscheidungsbaum zur Festlegung der Erdungsanforderungen

Start	Start
Q1	F1
ALL	ALLE
SOME	EINIGE
NONE	KEINE
System is all IS	System ist komplett IS
System is mixed IS and non-IS	System hat IS- und Nicht-IS-Bauteile
System is not an IS system	System ist nicht ein IS-System
Q2	F2
YES	JA
NO	NEIN
Q3	F3
System can use either zener barrier or galvanic isolator	System kann entweder Zenerbarriere oder galvanischen
	T T (T
	Isolator verwenden
System must use galvanic isolator	Isolator verwenden System muss galvanischen Isolator verwenden
System must use galvanic isolator Q4	Isolator verwenden System muss galvanischen Isolator verwenden F4
System must use galvanic isolator Q4 Diagrams 2 and 4	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4
System must use galvanic isolator Q4 Diagrams 2 and 4 Diagrams 1 and 5	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4 Diagramme 1 und 5
System must use galvanic isolator Q4 Diagrams 2 and 4 Diagrams 1 and 5 Diagrams 2 and 5	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4 Diagramme 1 und 5 Diagramme 2 und 5
System must use galvanic isolator Q4 Diagrams 2 and 4 Diagrams 1 and 5 Diagrams 2 and 5 Diagrams 2, 3 and 4	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4 Diagramme 1 und 5 Diagramme 2 und 5 Diagramme 2, 3 und 4
System must use galvanic isolator Q4 Diagrams 2 and 4 Diagrams 1 and 5 Diagrams 2 and 5 Diagrams 2, 3 and 4 Diagrams 1, 3 and 5	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4 Diagramme 1 und 5 Diagramme 2 und 5 Diagramme 2, 3 und 4 Diagramme 1, 3 und 5
System must use galvanic isolator Q4 Diagrams 2 and 4 Diagrams 1 and 5 Diagrams 2, 3 and 4 Diagrams 1, 3 and 5 Diagrams 2, 3 and 5 Diagrams 2, 3 and 5	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4 Diagramme 1 und 5 Diagramme 2, 3 und 4 Diagramme 1, 3 und 5 Diagramme 2, 3 und 5
System must use galvanic isolator Q4 Diagrams 2 and 4 Diagrams 1 and 5 Diagrams 2 and 5 Diagrams 2, 3 and 4 Diagrams 1, 3 and 5 Diagrams 2, 3 and 4 Diagrams 1, 3 and 5 Diagrams 1, 3 and 5 Diagrams 1 and 3	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4 Diagramme 2 und 5 Diagramme 2, 3 und 4 Diagramme 1, 3 und 5 Diagramme 2, 3 und 4 Diagramme 1, 3 und 5 Diagramme 1, 3 und 5 Diagramme 1, 3 und 5 Diagramme 1, 1 und 3
System must use galvanic isolator Q4 Diagrams 2 and 4 Diagrams 1 and 5 Diagrams 2, 3 and 5 Diagrams 1, 3 and 5 Diagrams 2, 3 and 4 Diagrams 2, 3 and 5 Diagrams 2, 3 and 5 Diagrams 2, 3 and 5 Diagrams 2 and 3	Isolator verwenden System muss galvanischen Isolator verwenden F4 Diagramme 2 und 4 Diagramme 1 und 5 Diagramme 2, 3 und 4 Diagramme 1, 3 und 5 Diagramme 2, 3 und 5 Diagramme 1, 3 und 5 Diagramme 1, 3 und 5 Diagramme 1, 3 und 5 Diagramme 2, 3 und 5 Diagramme 1 und 3 Diagramme 2 und 3

Diagramme

Diagramm 1

Schließen Sie das Vortex Chassis (Erde) an TP1 am Stromüberwachungsmodul an.

Diagramm 2

Schließen Sie das Vortex Chassis (Erde) an TP2 am Stromüberwachungsmodul an.

TP2	TP2

Diagramm 3

Sensoranschluss an Vortex ohne Barriere oder Isolator.

Sensor	Sensor
Vortex	Vortex
Example: Txgard-IS	Beispiel: Txgard-IS
Connection to Vortex Chassis by cable gland	Anschluss an Vortex Chassis über Kabeldurchführung
Quad channel input module	Vierkanaleingangsmodul

Anhang F

3-Leiter

Sensor	Sensor
SIG	SIG
Vortex	Vortex
Example: Txgard-IS	Beispiel: Txgard-IS
Connection to Vortex Chassis by cable gland	Anschluss an Vortex Chassis über Kabeldurchführung
Quad channel input module	Vierkanaleingangsmodul

In einem System mit eigensicheren und feuerfesten Sensoren in einem gefährdeten Bereich (Zone 1 oder 2) können die feuerfesten Sensoren wie oben dargestellt angeschlossen werden, vorausgesetzt der jeweilige Sensor erfüllt die Normen EN50014 und En50018 (IEC 60079–0 und IEC 60079–1).

Diagramm 4A

Gassensoranschluss an Vortex über eine Zenerbarriere.

Sensor	Sensor
Zener barrier	Zenerbarriere
Vortex	Vortex
Example: Txgard-IS	Beispiel: Txgard-IS
Earth	Erde
Example: MTL 728	Beispiel: MTL 728
Connection to Vortex Chassis by cable gland	Anschluss an Vortex Chassis über Kabeldurchführung
Quad channel input module	Vierkanaleingangsmodul
HAZARDOUS AREA	GEFÄHRDETER BEREICH
SAFE AREA	SICHERER BEREICH
NOTE: The vortex 0V line is connected to earth	HINWEIS: Die 0V Leitung des Vortex ist über die
internally by the barrier.	Barriere intern an die Erde angeschlossen.

<u>Anhang F</u>

Diagramm 4B

Feuerdetektoranschluss an Vortex über eine Zenerbarriere.

Sensor	Sensor
Zener barrier	Zenerbarriere
Vortex	Vortex
Example: Apollo Series 60	Beispiel: Txgard-IS
IS	IS
Earth	Erde
Example: MTL 728	Beispiel: MTL 728
Connection to Vortex Chassis by cable gland	Anschluss an Vortex Chassis über Kabeldurchführung
Quad channel input module	Vierkanaleingangsmodul
HAZARDOUS AREA	GEFÄHRDETER BEREICH
SAFE AREA	SICHERER BEREICH

Diagramm 5A

Gassensoranschluss an Vortex über einen galvanischen Isolator.

Sensor	Sensor
Isolator	Isolator
Vortex	Vortex
Example: Txgard-IS	Beispiel: Txgard-IS
Example: MTL 728	Beispiel: MTL 728
Connection to Vortex Chassis by cable gland	Anschluss an Vortex Chassis über Kabeldurchführung
Quad channel input module	Vierkanaleingangsmodul
HAZARDOUS AREA	GEFÄHRDETER BEREICH
SAFE AREA	SICHERER BEREICH

Diagramm 5B

Vortex Isolator L1 OUT 12 11 example: MTL 5001 L1 IN 3 2 3 2 Connection to Vortex chas ວັບັກ OUT Internal screw terminal Quad Quad 12 Channel Input Module Channe Input Module ample: Apolk Serles 60 HAZARDOUS AREA SAFE AREA

Feuersensoranschluss an Vortex über einen galvanischen Isolator (zweifach).

Sensors	Sensoren
Isolator	Isolator
Vortex	Vortex
Example: MTL 5001	Beispiel: MTL 5001
Connection to Vortex Chassis by internal screw terminal	Anschluss an Vortex Chassis über interne Schraubklemme
Quad channel input module	Vierkanaleingangsmodul
Example: Apollo Series 60	Beispiel: Apollo Baureihe 60
HAZARDOUS AREA	GEFÄHRDETER BEREICH
SAFE AREA	SICHERER BEREICH

Verdrahtungsnormen

Zu allgemeinen Verdrahtungsanforderungen siehe Abschnitt 3.6. In Großbritannien und Europa gelten folgende Normen bezüglich Erdung und Abschirmung.

- EN60079-14 Abschnitt 12.2.4 bezüglich Auslegungsanforderungen für die Erdungsleiste der Barriere.
- EN60079-14 Abschnitt 12.2.2.3 bezüglich der Erdung von Abschirmungen in gefährdeten Bereichen.

Wenn galvanische Isolatoren verwendet werden, muss der Anschluss des Nullleiters an das Chassis (an Vortex TP1 oder an die externe Stromversorgung bei nichtisolierter Stromversorgung) und die Verbindung von Chassis zur Erde eine hohe Qualität, geringen Widerstand und hohen Eigenschutz aufweisen.

Ein hilfreicher Text über Erdung ist:

"A definitive guide to earthing and bonding in hazardous areas - TP1121" (Ein ausführlicher Leitfaden zu Erdung und Verdrahtung in gefährdeten Bereichen) von MTL Instruments Group PLC, Power Court, Luton, England, LU1 3JJ. Internetadresse <u>www.mtl-inst.com</u>.

Zur Installation von Schallgebern oder anderen Warngeräten in gefährdeten Bereichen, beachten Sie bitte die Herstellerangaben des jeweiligen Geräts.

GEWÄHRLEISTUNGSERKLÄRUNG Gewährleistungserklärung - 07/07

Dieses Produkt verlässt unser Werk nach vollständiger Prüfung. Sollte innerhalb des Garantiezeitraums das Produkt Schäden aufgrund mangelhafter Ausführung oder Materialfehlern aufweisen, garantieren wir, das Produkt nach unserem Ermessen kostenlos zu reparieren oder zu ersetzen, je nach Garantiebedingungen.

Vorgehen im Gewährleistungsfall

Um eine schnelle Schadensbearbeitung zu gewährleisten, wenden Sie sich an unser Kundenservice-Team unter 01235 557711 und halten Sie folgende Informationen bereit:

Ihre Kontaktdaten: Name, Telefonnummer, Faxnummer und E-Mail Adresse. Beschreibung und Menge der beanstandeten Teile, einschließlich Zubehör.

Seriennummer(n) des Geräts/der Geräte.

Grund der Beanstandung / Rücksendung.

Verwenden Sie zur besseren Identifizierung und Nachverfolgung ein Rücksendeformular. Dieses Formular können Sie zusammen mit einem Versandaufkleber für die Rücksendung auf unserer Website ,crowconsupport.com' herunterladen. Wir senden Ihnen aber auch gerne ein Formular per Email zu.

Ohne die Crowcon Returns Number (Crowcon Rücksendenummer - CRN) übernehmen wir keine Gewährleistung für Gerät. Der Adressaufkleber muss sicher auf der äußeren Verpackung der Rücksendung angebracht werden.

Für Geräte, die als fehlerhaft an Crowcon zurückgeschickt werden und sich anschließend als "fehlerfrei" herausstellen oder lediglich eine Wartung benötigen, kann eine Transport- und Bearbeitungsgebühr anfallen.

Gewährleistungsausschluss

Die Garantie verliert ihre Gültigkeit, sollte sich herausstellen, dass ein Gerät verändert, modifiziert, ausgebaut, oder manipuliert wurde. Diese Gewährleistung umfasst weder falschen Gebrauch noch Missbrauch des Geräts.

Gewährleistung für Batterien kann ihre Gültigkeit verlieren, sollte sich herausstellen, dass eine nicht angemessene Lademethode angewendet wurde.

Crowcon übernimmt keinerlei Haftung für Folgeschäden, indirekte Schäden oder anderweitig entstehende Schäden (einschließlich Verlust oder Beschädigung aus dem Gebrauch des Geräts) und Haftung im Hinblick auf Dritte wird ausdrücklich ausgeschlossen.

Die Gewährleistung und Garantieerklärung gelten nicht für Kalibrierungsgenauigkeit des Geräts oder Oberflächenqualität des Produkts. Das Gerät muss gemäß den Anweisungen zu Betrieb und Wartung gewartet werden.

Unsere Haftung für fehlerhafte Geräte ist auf die Verpflichtungen aus der Garantie beschränkt. Jegliche weitergehenden Gewährleistungen, Bedingungen oder Aussagen, ganz gleich ob ausdrücklich oder impliziert, gesetzlich oder anderweitig, im Hinblick auf die handelsübliche Qualität unserer Geräte oder ihre Eignung für einen bestimmten Zweck sind ausgeschlossen, ausgenommen, ein solcher Ausschluss ist gesetzlich verboten.

Diese Garantie hat keinen Einfluss auf die gesetzlichen Rechtsansprüche eines Kunden.

Bei Fragen zur Gewährleistung und für technische Hilfe wenden Sie sich bitte an:

Kundenservice Tel +44 (0) 1235 557711 Fax +44 (0) 1235 557722 Email "customersupport@crowcon.com"

CROWCON

